Synthesis of SiO(x) powder using DC arc plasma.

J Nanosci Nanotechnol

Department of Chemical Engineering and Regional Innovation, Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751, Republic of Korea.

Published: February 2013

SiO(x) was prepared by DC arc plasma and applied to the anode material of lithium ion batteries. A pellet of a mixture of Si and SiO2 was used as the raw material. The ratios of the silicon and silicon dioxide (SiO2) mixtures were varied by controlling the Si-SiO2 molar ratio (Si-SiO2 = 1-4). Hydrogen gas was used as the reduction atmosphere in the chamber. The prepared SiO(x) was collected on the chamber wall. The obtained SiO(x) was characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that the phase composition of the prepared particles was composed of amorphous SiO(x) and crystalline Si. The prepared SiO(x) showed wire and spherical morphology. XPS indicated the bonding state and 'x' value of the prepared SiO(x), which was close to one. The result of prepared SiO(x) is discussed from thermodynamic equilibrium calculations. The electrochemical behavior of the silicon monoxide anode was investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.6035DOI Listing

Publication Analysis

Top Keywords

prepared siox
16
arc plasma
8
electron microscopy
8
siox
7
prepared
6
synthesis siox
4
siox powder
4
powder arc
4
plasma siox
4
siox prepared
4

Similar Publications

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Mutual suppression of MnO and SiO in an innovative anode design for enhanced cycling stability.

Chem Commun (Camb)

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

We designed a SiO@C/MnO composite material with ultrafine particle size using a simple sol-gel method and calcination process. SiO and MnO components produce a mutual suppression effect during the charge/discharge process to mitigate volume expansion and maintain the long-term stability of composite.

View Article and Find Full Text PDF

Silicon heterojunction (SHJ) solar cells, as one of the most promising passivated contact solar cell technologies of the next generation, have the advantages of high conversion efficiency, high open-circuit voltage, low-temperature coefficient, and no potential-induced degradation. For the single-side rear-emitter SHJ solar cells, the n-type carrier selective layer, which serves as the light-incident side, plays a pivotal role in determining the performance of heterojunction devices. Consequently, a superior n-doped layer should exhibit high optical transmittance and minimal optical absorption, along with a substantial effective doping level to guarantee the formation of dark conductivity (σ) and electron-transport capacity.

View Article and Find Full Text PDF

Pre-lithiation synergized with magnesiothermic reduction to enhance the performance of SiO anode for advanced lithium-ion batteries.

J Colloid Interface Sci

February 2025

Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Due to its high theoretical specific capacity, micron-sized silicon monoxide (SiO) is regarded as one of the most competitive anode materials for lithium-ion batteries with high specific energy density. However, originating from the low initial Coulombic efficiency (ICE) and large volume expansion, its large-scale application is seriously hindered. Herein, an easy-to-implement solid-state pre-lithiation method synergized with the magnesiothermic reduction process was performed to enhance the ICE of SiO and a common bimetallic hydride was used as a prelithiation reagent.

View Article and Find Full Text PDF

Fluorine-Doping Carbon-Modified Si/SiO to Effectively Achieve High-Performance Anode.

Small

January 2025

College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China.

To address the significant challenges encountered by silicon-based anodes in high-performance lithium-ion batteries (LIBs), including poor cycling stability, low initial coulombic efficiency (ICE), and insufficient interface compatibility, this work innovatively prepares high-performance Si/SiOx@F-C composites via in situ coating fluorine-doping carbon layer on Si/SiOx surface through high-temperature pyrolysis. The Si/SiO@F-C electrodes exhibit superior LIB performance with a high ICE of 79%, exceeding the 71% and 43% demonstrated by Si/SiO@C and Si/SiO, respectively. These electrodes also show excellent rate performance, maintaining a capacity of 603 mAhg even under a high current density of 5000 mAg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!