AI Article Synopsis

  • The study explores the microstructure and gas-sensing capabilities of ordered mesoporous Co3O4 created using a modified KIT-6 template method.
  • Characterization techniques like X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanostructures significantly enhance the sensor's response and selectivity to ethanol.
  • Findings indicate that the material's large surface area and porous structure contribute to its effectiveness as an alcohol gas sensor, making it a promising candidate for future applications.

Article Abstract

We report the microstructure, gas-sensing properties of the ordered mesoporous Co3O4 prepared by modified KIT-6 template method. Highly ordered mesoporous nanostructures of the as-prepared products have been characterized by X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), high-resolution transmission electron microscopy (HRTEM) and N2 adsorption/desorption analysis. We find that the ordered mesoporous Co3O4 enables a significant improvement of sensor response and selectivity to ethanol, which demonstrates the potential use of the ordered mesoporous Co3O4 as alcohol gas-sensing material. Through the analysis of microstructure including HRTEM and N2 adsorption/desorption, the sensing properties for the ordered mesoporous Co3O4 can be attributed qualitatively to its large specific surface area and porous morphology. Moreover, the results of EXAFS illustrate that the disorder degree and unsaturated bond of the ordered mesoporous Co3O4 increase, which agree well with the results observed in gas sensors. This makes the nanostructured ordered mesoporous Co3O4 a promising sensor material for detecting the alcohol gas.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.6055DOI Listing

Publication Analysis

Top Keywords

ordered mesoporous
32
mesoporous co3o4
28
microstructure gas-sensing
8
ordered
8
mesoporous
8
properties ordered
8
hrtem adsorption/desorption
8
co3o4
7
gas-sensing property
4
property ordered
4

Similar Publications

Ultrahigh-Power Carbon-Based Supercapacitors through Order-Disorder Balance.

Small

January 2025

Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China.

Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.

View Article and Find Full Text PDF

Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!