Curcumin, a dietary polyphenol, has shown a potential to act on the symptoms of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, as a consequence of its antioxidant, anti-inflammatory and anti-protein aggregation properties. Unfortunately, curcumin undergoes rapid degradation at physiological pH into ferulic acid, vanillin and dehydrozingerone, making it an unlikely drug candidate. Here, we evaluated the ability of some curcumin by-products: dehydrozingerone (1), its O-methyl derivative (2), zingerone (3), and their biphenyl analogues (4-6) to interact with α-synuclein (AS), using CD and fluorescence spectroscopy. In addition, the antioxidant properties and the cytoprotective effects in rat pheochromocytoma (PC12) cells prior to intoxication with H2O2, MPP+ and MnCl2 were examined while the Congo red assay was used to evaluate the ability of these compounds to prevent aggregation of AS. We found that the biphenyl zingerone analogue (6) interacts with high affinity with AS and also displays the best antioxidant properties while the biphenyl analogues of dehydrozingerone (4) and of O-methyl-dehydrozingerone (5) are able to partially inhibit the aggregation process of AS, suggesting the potential role of a hydroxylated biphenyl scaffold in the design of AS aggregation inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-013-1503-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!