Porous scaffolds are limited in volume due to diffusion constraint and delay of vascular network formation. Channels have the potential to speed up cellular penetration. Their effectiveness in improving angiogenic cell penetration was assessed in vitro and in vivo in 3-D collagen scaffolds. In vitro, channelled and non-channelled scaffolds were seeded with vascular smooth muscle cells. Results demonstrated that the scaffolds supported angiogenic cell ingrowth in culture and the channels improved the depth of cell penetration into the scaffold (P < 0.05). The cells reside mainly around and migrate along the channels. In vivo, channels increased cell migration into the scaffolds (P < 0.05) particularly angiogenic cells (P < 0.05) resulting in a clear branched vascular network of microvessels after 2 weeks in the channelled samples which was not apparent in the non-channelled samples. Channels could aid production of tissue engineered constructs by offering the possibility of rapid blood vessel infiltration into collagen scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-013-4912-7DOI Listing

Publication Analysis

Top Keywords

angiogenic cell
12
cell penetration
12
vitro vivo
8
collagen scaffolds
8
scaffolds
5
improved angiogenic
4
cell
4
penetration
4
penetration vitro
4
vivo collagen
4

Similar Publications

Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases.

Expert Opin Ther Targets

January 2025

Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.

Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.

Areas Covered: This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.

View Article and Find Full Text PDF

There is an urgent need to develop new targeted treatment agents for small cell lung cancer (SCLC). Tinengotinib (TT-00420) is a novel, multi-targeted, and spectrally selective small-molecule kinase inhibitor that has shown significant inhibitory effects on certain solid tumors in preclinical studies. However, its role and mechanism of action in SCLC remain unclear.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer that has limited treatment options and a poor prognosis. Transarterial chemoembolization (TACE) is the first-line treatment for intermediate-stage HCC but can induce tumour hypoxia, thereby promoting angiogenesis. Recent studies suggested that combining TACE with anti-angiogenic therapies and immunotherapy might improve efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!