This study investigated the fermentation and microbiota profiles of three fibers, wheat dextrin (WD), partially hydrolyzed guar gum (PHGG), and inulin, since little is known about the effects of WD and PHGG on gut microbiota. A treatment of salivary amylase, pepsin, and pancreatin was used to better physiologic digestion. Fibers (0.5 g) were fermented in triplicate including a control group without fiber for 0, 4, 8, 12, and 24 h. Analysis of pH, gas volume, hydrogen and methane gases, and short chain fatty acid (SCFA) concentrations were completed at each time point. Quantitative polymerase chain reaction (qPCR) was used to measure Bifidobacteria and Lactobacillus CFUs at 24 h. WD produced the least gas during fermentation at 8, 12, and 24 h (P < 0.0001), while inulin produced the most by 8 h (P < 0.0001). Each fiber reached its lowest pH value at different time points with inulin at 8 h (mean ± SE) (5.94 ± 0.03), PHGG at 12 h (5.98 ± 0.01), and WD at 24 h (6.17 ± 0.03). All fibers had higher total SCFA concentrations compared to the negative control (P < 0.05) at 24 h. At 24 h, inulin produced significantly (P = 0.0016) more butyrate than WD with PHGG being similar to both. An exploratory microbial analysis (log(10) CFU/µL) showed WD had CFU for Bifidobacteria (6.12) and Lactobacillus (7.15) compared with the control (4.92 and 6.35, respectively). Rate of gas production is influenced by fiber source and may affect tolerance in vivo. Exploratory microbiota data hint at high levels of Bifidobacteria for WD, but require more robust investigation to corroborate these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708332 | PMC |
http://dx.doi.org/10.3390/nu5051500 | DOI Listing |
J Sci Food Agric
December 2024
Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
Background: In recent years, consumer preference for symbiotics containing live bacteria has surged, driven by the acknowledged health benefits. Wheat residue from beer brewing, rich in dietary fiber, remains an unexplored prebiotic raw material for developing vegan probiotic powdered products. Concerns about ambient conditions, dehydration and drying affecting bacterial cell viability prompt the investigation of protective agents (maltodextrin, l-arabinose, casein, whey protein, skimmed milk) and fluidized bed granulation microencapsulation for enhancing the survival rate of Lactiplantibacillus plantarum NKUST 817.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China. Electronic address:
The molecular structures of different starch sources differ, and the structure of the prepared resistant dextrin is affected. Seven types of starches (corn, wheat, pea, mung bean, tapioca, sweet potato, and potato) were used to prepare resistant dextrins under identical conditions. The physicochemical properties, molecular structure, micromorphology, glucose dialysis retardation index (GDRI), and cholesterol-binding capacity of different starch-resistant dextrins were analyzed and compared.
View Article and Find Full Text PDFVet Res Forum
August 2024
Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
A 35-day study investigated the impact of carbon sources and carbon/nitrogen (C/N) ratios on the microbial community of biofloc. For this purpose, we utilized a combination of phospho-lipid fatty acids (PLFAs) profiles and DNA-based sequencing methods to investigate changes in the microbial community composition and structure. The experiment involved three carbon sources including Dextrin (DEX), corn starch (CS) and wheat bran (WB) at two C/N ratios (19 and 30).
View Article and Find Full Text PDFMicrob Cell Fact
May 2024
Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France.
Background: Xylans are polysaccharides that are naturally abundant in agricultural by-products, such as cereal brans and straws. Microbial degradation of arabinoxylan is facilitated by extracellular esterases that remove acetyl, feruloyl, and p-coumaroyl decorations. The bacterium Ruminiclostridium cellulolyticum possesses the Xua (xylan utilization associated) system, which is responsible for importing and intracellularly degrading arabinoxylodextrins.
View Article and Find Full Text PDFJ Nutr
July 2024
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States. Electronic address:
Background: The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogeneous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!