Recently, carbon dots (CDs) have been among the most promising emerging fluorescent labels for cellular imaging. In this work, a new facile synthesis method was developed for fabricating CDs from polystyrene foam waste and common organic solvents. The CDs obtained have tunable emission from blue to orange and are expected to be of use for labeling different cellular structures simultaneously. Transmission electron microscopy, x-ray diffraction, Raman spectra, Fourier transform infrared spectrometry, UV-vis, and fluorescence spectrophotometry (PL) were employed to investigate the structures and luminescence properties of CDs. The highest quantum yield (QY) achieved was 36%. The mechanisms for the formation and luminescence of the CDs are analyzed. The ability of the solvent to disperse the CDs plays a very important role in the origin of PL. The type of organic solvent has an important influence on the position of emission peaks and the QY. Different emissive traps play the dominant role in the luminescence of carbon materials. Furthermore, a hemolysis assay was performed to evaluate the biocompatibility of these CDs in vitro. The biocompatibility of the CDs, even at very high doses, ensures their potential in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/24/22/225601 | DOI Listing |
Background: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) is a neurodegenerative disorder whose pathological hallmarks include tau and amyloid beta aggregation, a phenomenon that has been linked to inflammation and degradation of brain tissue. Prior data published in the Wang lab suggests that carbon dots (CDs) synthesized from citric acid and urea can inhibit aggregation. We sought to characterize the inhibitory effects of a new class of CDs synthesized from varied ratios of Congo red and citric acid.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).
View Article and Find Full Text PDFTurk J Chem
November 2024
School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, P.R. China.
The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!