Radon and progeny ((218)Po, (214)Pb, (214)Bi and (214)Po) are radioactive indoor pollutants recognised for the human radiation burden that they induce. Bathing in thermal spas causes transient concentration peaks of radon and progeny and additional short-term impact in patients and personnel. This paper reports a semi-empirical non-linear first order model for describing radon and progeny variations in treatment rooms of the Ikaria spas. Non-measured physical parameters were estimated from in situ measurements in Ikaria through non-linear numerical solving. Exposure and dose variations were additionally modelled. Attachment rate constants were found to be between 0.44 and 55 h(-1). Deposition rate constants were between 0.28 and 7.3 h(-1) for attached nuclei and 0.42 and 64 h(-1) for unattached nuclei. Unattached progeny peaks were right-shifted compared to those of radon. Modelled effective doses ranged between 0.001 mSv per year and 0.589 mSv per year for patients and between 0.001 mSv per year and 18.9 mSv per year for workers. Apollon spas presented quite high doses. These were the highest reported in Greece and are significant worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3em00030cDOI Listing

Publication Analysis

Top Keywords

radon progeny
16
msv year
16
concentration peaks
8
situ measurements
8
measurements ikaria
8
ikaria spas
8
rate constants
8
0001 msv
8
radon
5
progeny
5

Similar Publications

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

Estimation radon exposure in underground gold mines in Colombia.

Radiat Prot Dosimetry

December 2024

Radiological Physics Group, Universidad Nacional de Colombia, 65 Avenue 59A St 110, 050034, Medellín, Colombia.

Environmental measurements of Radon and its progeny were carried out in a gold mining area in the department of Antioquia, Colombia. Radon concentration measurements were carried out during 2 y in seven different measurement points in three types of geological zones, by using EPERM electret chambers and DOSEman Pro detectors at each point. Radon concentration values between 858 ± 59 Bq m-3 and 2469 ± 158 Bq m-3 and an equilibrium factor between 0.

View Article and Find Full Text PDF

A soil-vegetation-atmospheric transfer (SVAT) model for radon and its progeny is presented to improve process-level understanding of the role of forests in taking-up radionuclides from soil radon outgassing. A dynamic system of differential equations couples soil, tree (Scots pine) and atmospheric processes, treating the trees as sources, sinks and conduits between the atmosphere and the soil. The model's compartments include a dual-layer soil column undergoing hydrological and solute transport, the tree system (comprising roots, wood, litter, and foliage) and the atmosphere, with physical processes governing the transfers of water and radon products between these compartments.

View Article and Find Full Text PDF

The uranium mines both developed and abandoned appear to be one of the most significant sources of radon exhalation in the world. Therefore, the study of radon exposure of the population in the areas around rehabilitated uranium mines is very important. This article presents the results of the radon release studies at the rehabilitated Beshtaugorsky uranium mine site, which is now used by local people for hiking and picnicking.

View Article and Find Full Text PDF
Article Synopsis
  • The study assesses radon and thoron exhalation rates using a closed-loop technique with online radon monitors, particularly focusing on the balance of air volume in the sample and detector chambers.
  • An alternative model is proposed that treats the sample and detector chambers as separate entities, refining the mass balance equation to account for air flow rates affecting radon/thoron concentrations.
  • Results indicate that while lower flow rates don't affect long-lived radon buildup, experiments showed that increasing flow rates impacts the effective removal rate of radon, suggesting potential issues with thoron interference at lower flows.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!