CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity.

Oncogene

1] CRS Development of Biomolecular Therapies, Bologna, Italy [2] Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy [3] PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, Italy.

Published: April 2014

CD99, a transmembrane protein encoded by MIC2 gene is involved in multiple cellular events including cell adhesion and migration, apoptosis, cell differentiation and regulation of protein trafficking either in physiological or pathological conditions. In osteosarcoma, CD99 is expressed at low levels and functions as a tumour suppressor. The full-length protein (CD99wt) and the short-form harbouring a deletion in the intracytoplasmic domain (CD99sh) have been associated with distinct functional outcomes with respect to tumour malignancy. In this study, we especially evaluated modulation of cell-cell contacts, reorganisation of the actin cytoskeleton and modulation of signalling pathways by comparing osteosarcoma cells characterised by different metastasis capabilities and CD99 expression, to identify molecular mechanisms responsible for metastasis. Our data indicate that forced expression of CD99wt induces recruitment of N-cadherin and β-catenin to adherens junctions. In addition, transfection of CD99wt inhibits the expression of several molecules crucial to the remodelling of the actin cytoskeleton, such as ACTR2, ARPC1A, Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) as well as ezrin, an ezrin/radixin/moesin family member that has been clearly associated with tumour progression and metastatic spread in osteosarcoma. Functional studies point to ROCK2 as a crucial intracellular mediator regulating osteosarcoma migration. By maintaining c-Src in an inactive conformation, CD99wt inhibits ROCK2 signalling and this leads to ezrin decrease at cell membrane while N-cadherin and β-catenin translocate to the plasma membrane and function as main molecular bridges for actin cytoskeleton. Taken together, we propose that the re-expression of CD99wt, which is generally present in osteoblasts but lost in osteosarcoma, through inhibition of c-Src and ROCK2 activity, manages to increase contact strength and reactivate stop-migration signals that counteract the otherwise dominant promigratory action of ezrin in osteosarcoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/onc.2013.152DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
12
rock2 activity
8
osteosarcoma cells
8
n-cadherin β-catenin
8
cd99wt inhibits
8
osteosarcoma
7
rock2
5
cd99wt
5
cd99
4
cd99 suppresses
4

Similar Publications

Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.

View Article and Find Full Text PDF

Background: CHRFAM7A is a human-restricted gene associated with neuropsychiatric and neurodegenerative disorders. The translated CHRFAM7A protein incorporates into the α7 nicotinic acetylcholine receptor (α7nAChR) leading to a hypomorphic receptor. Mechanistic insight from isogenic iPSC derived neuronal and mononuclear cells demonstrated that CHRFAM7A affects Ca signaling and activates small GTPase Rac1 leading to an actin cytoskeleton gain of function.

View Article and Find Full Text PDF

Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.

Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).

View Article and Find Full Text PDF

Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.

View Article and Find Full Text PDF

Actin instability alters red blood cell mechanics and Piezo1 channel activity.

Biomech Model Mechanobiol

January 2025

CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.

The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!