The differentiation of αβT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660436 | PMC |
http://dx.doi.org/10.1038/ni.2590 | DOI Listing |
J Clin Invest
January 2025
Department of Dermatology, and.
Elife
December 2024
Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, United States.
During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets.
View Article and Find Full Text PDFPLoS One
December 2024
National Cancer Institute (NCI), National Institutes of Health (NIH), Experimental Immunology Branch, Bethesda, MD, United States of America.
Nature
November 2024
Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
T cells develop from circulating precursor cells, which enter the thymus and migrate through specialized subcompartments that support their maturation and selection. In humans, this process starts in early fetal development and is highly active until thymic involution in adolescence. To map the microanatomical underpinnings of this process in pre- and early postnatal stages, we established a quantitative morphological framework for the thymus-the Cortico-Medullary Axis-and used it to perform a spatially resolved analysis.
View Article and Find Full Text PDFJ Pathol
November 2024
Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
T-lymphoblastic lymphoma (T-LBL) and thymoma are two rare primary tumors of the thymus deriving either from T-cell precursors or from thymic epithelial cells, respectively. Some thymoma subtypes (AB, B1, and B2) display numerous reactive terminal deoxynucleotidyl transferase-positive (TdT) T-cell precursors masking epithelial tumor cells. Therefore, the differential diagnosis between T-LBL and TdT T-lymphocyte-rich thymoma could be challenging, especially in the case of needle biopsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!