AI Article Synopsis

  • Laminopathies are genetic disorders caused by mutations in the LMNA gene, affecting nuclear envelope proteins and leading to conditions like muscular dystrophies and cardiomyopathies.
  • Research in mice shows that mutations in lamin A/C disrupt the function of the transcription factor MKL1, which is essential for cardiac development, by impairing its movement into the nucleus and affecting cellular actin dynamics.
  • Restoring the function of the protein emerin in mutant cells helped improve MKL1's nuclear entry and corrected actin issues, suggesting a potential mechanism for the heart-related symptoms seen in laminopathies.

Article Abstract

Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666313PMC
http://dx.doi.org/10.1038/nature12105DOI Listing

Publication Analysis

Top Keywords

mutant cells
16
actin dynamics
12
lamin a/c
8
a/c emerin
8
emerin regulate
8
nuclear envelope
8
muscular dystrophy
8
function altered
8
lmna-/- lmnan195k/n195k
8
lmnan195k/n195k mutant
8

Similar Publications

Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast (CLE) is a well characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined.

View Article and Find Full Text PDF

Elevated blood levels of estrogens are associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating blood hormone levels and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal.

View Article and Find Full Text PDF

The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!