Long-term exposure to vehicle emissions has been associated with detrimental health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children's exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol (OA) and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. TOF-AMS enabled the chemical composition of the non-refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other OA components during school hours. The organic fraction at each school comprised the majority of NR-PM1. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. A significant source of the OA at two of the schools was aged vehicle emissions from nearby highways. More oxidised OA was observed at the remaining two schools, which also recorded strong biomass burning influences. In general, the diurnal cycle of the total OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA at all schools. Peak exposure of school children to vehicle emissions occurred during school drop-off and pick-up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during school hours in urban environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2013.04.007 | DOI Listing |
Sci Rep
January 2025
The Alan Turing Institute, London, UK.
Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science, American International University-Bangladesh (AIUB), Dhaka, 1229, Bangladesh.
The transportation industry contributes significantly to climate change through carbon dioxide ( ) emissions, intensifying global warming and leading to more frequent and severe weather phenomena such as flooding, drought, heat waves, glacier melting, and rising sea levels. This study proposes a comprehensive approach for predicting emissions from vehicles using deep learning techniques enhanced by eXplainable Artificial Intelligence (XAI) methods. Utilizing a dataset from the Canadian government's official open data portal, we explored the impact of various vehicle attributes on emissions.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
On-Board Diagnostic (OBD) systems enable real-time monitoring of NOx emissions from heavy-duty diesel vehicles (HDDVs). However, few studies have focused on the root cause analysis of these emissions using OBD data. To address this gap, this study proposes an integrated analysis framework for HDDV NOx emissions that combines data processing, high-emission vehicle identification, and emission cause analysis.
View Article and Find Full Text PDFEnviron Pollut
January 2025
The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
This work is the first comprehensive survey of the Yangtze River, covering its origin to the estuary mouth. It focuses on the geographical and industrial factors influencing the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments, along with their contamination levels, sources, and ecological risks. The total concentrations of PAHs ranged from 2.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Medical Research Building (MRB) II, Ghent University Hospital, 2 Floor, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Introduction: Diesel exhaust particles (DEP) have been proven to aggravate asthma pathogenesis. We previously demonstrated that concurrent exposure to house dust mite (HDM) and DEP in mice increases both eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) and also results in higher levels of neutrophil-recruiting chemokines and neutrophil extracellular trap (NET) formation compared to sole HDM, sole DEP or saline exposure. We aimed to evaluate whether treatment with anti-IL-5 can alleviate the asthmatic features in this mixed granulocytic asthma model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!