The structures of the two predominant metabolites (M4 and M5) of RVX-208, observed both in in vitro human and animal liver microsomal incubations, as well as in plasma from animal in vivo studies, were determined. A panel of biocatalytic systems was tested to identify biocatalysts suitable for milligram scale production of metabolite M4 from RVX-208. Rabbit liver S9 fraction was selected as the most suitable system, primarily based on pragmatic metrics such as catalyst cost and estimated yield of M4 (∼55%). Glucuronidation of RVX-208 catalyzed by rabbit liver S9 fraction was optimized to produce M4 in amounts sufficient for structural characterization. Structural studies using LC/MS/MS analysis and (1)H NMR spectroscopy showed the formation of a glycosidic bond between the primary hydroxyl group of RVX-208 and glucuronic acid. NMR results suggested that the glycosidic bond has the β-anomeric configuration. A synthetic sample of M4 confirmed the proposed structure. Metabolite M5, hypothesized to be the carboxylate of RVX-208, was prepared using human liver microsomes, purified by HPLC, and characterized by LC/MS/MS and (1)H NMR. The structure was confirmed by comparison to a synthetic sample. Both samples confirmed M5 as a product of oxidation of primary hydroxyl group of RVX-208 to carboxylic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2013.03.062 | DOI Listing |
Front Microbiol
December 2024
Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Curitiba, Paraná, Brazil.
Introduction: The exploration of new bioactive compounds for agricultural applications is critical for sustainable development. Endophytic fungi, particularly those from underexplored biomes in Brazil, represent a promising source of natural compounds. This study focused on isolation and bioprospecting endophytic fungi from the medicinal plant (Pohl), grown in Serra do Amolar (Brazilian Pantanal Biome), with an additional emphasis on conserving microbial biodiversity.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel.
Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of 'grapefruit-drug interactions' in humans. Most of the pathway genes have not been identified in citrus. We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA.
Tuberculosis is a respiratory infection that is caused by members of the complex, with (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia.
Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive ( L.) primary and secondary metabolites have not been fully investigated.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland.
Plants of the genus, known for their rich phytochemical profiles, are used in traditional Chinese, Korean, Japanese, and Indian medicine to treat various ailments, including inflammation, hypertension, diabetes, hyperlipidemia, and cancer. Due to the limited natural availability of these plants, there is a growing interest in utilizing in vitro culture techniques to produce their bioactive compounds sustainably. In this study, the effects are compared of Murashige and Skoog (MS), Woody Plant medium (WP), Gamborg B5 (B5), and Schenk and Hildebrandt (SH) basal media on growth, biomass accumulation, and polyphenolic compound production in shoot cultures of and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!