New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2013.03.095DOI Listing

Publication Analysis

Top Keywords

thermoluminescence responses
8
responses photon-
4
photon- electron-irradiated
4
electron-irradiated lithium
4
lithium potassium
4
potassium borate
4
borate co-doped
4
co-doped cu+mg
4
cu+mg ti+mg
4
ti+mg glasses
4

Similar Publications

Eye lens dosimetry: does the direction of rotation (vertical or horizontal) play a role in type testing?

J Radiol Prot

January 2025

Radiation Protection Dosimetry (6.3), Physikalisch-Technische Bundesanstalt, Braunschweig, NDS, GERMANY.

With the International Commission on Radiological Protection (ICRP) lowering the annual dose limit for the eye lens to 20 mSv, precise monitoring of eye lens exposure has become essential. The personal dose equivalent at a depth of 3 mm, Hp(3), is the measurement method for monitoring the dose to the lens of the eye. Traditional dosimetry methods primarily address lateral radiation exposure scenarios, where radiation approaches from the left or right, necessitating the rotation of the phantom during type testing around the vertical axis.

View Article and Find Full Text PDF

. Clinical dosimetry in the presence of a 1.5 T magnetic field is challenging, let alone in case small fields are involved.

View Article and Find Full Text PDF

Novel non-thermoluminescent CaSO:Dy dosimeters.

Appl Radiat Isot

March 2025

Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190, Mexico. Electronic address:

The non-thermoluminescence afterglow-based dosimetry performance of self-agglomerating pellet-shaped CaSO:Dy phosphors synthesized through a low-cost, environmentally friendly method is first reported. Thermoluminescence (TL) and afterglow (AG) were analyzed in samples exposed to beta particle irradiation in the dose range from 0.06 to 8.

View Article and Find Full Text PDF

Impact of dose and heating rate on thermoluminescence kinetics in aquamarine (BeAl(SiO):Fe).

Appl Radiat Isot

February 2025

Grupo de Materiales y Física Aplicada, Departamento de Física, Universidad de Córdoba, Cra. 6 # 76-103, Montería, 230002, Colombia. Electronic address:

The study of a thermoluminescent (TL) material begins with the response of the material to different doses of radiation and different rates of heating (Bos, 2006a), For this reason, the present work deals with the possible variations of the kinetic parameters for two groups of glow curves of beryl in its variety known as aquamarine. (BeAl(SiO): Fe). The exposure and reading process was performed in a RISO TL/OSL DA-20 reader at room temperature.

View Article and Find Full Text PDF

Energy response of CaSO4:Dy thermoluminescence detector to medical linear accelerator photon beams.

Radiat Prot Dosimetry

December 2024

NuklindoLab, Research and Development Division, Plaza Ciputat Mas, 5A Ir. H. Juanda Street, Block B Kav P-Q, South Tangerang 15412, Indonesia.

The study aims to evaluate the energy response of the thermoluminescent dosemeter (TLD) CaSO4:Dy from high energy photon beams produced from medical linear accelerator. The test was performed on the polymethyl methacrylate phantom surface and at the depth of dose maximum with a source-to-surface distance of 100 cm and the radiation field size of 12 × 12 cm. The results were compared with the TLD response exposed to 60Co standard source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!