On the asymmetry of mating in natural populations of the mushroom fungus Schizophyllum commune.

Fungal Genet Biol

Laboratory of Genetics, Wageningen University, PO Box 309, 6700 AH, Wageningen, The Netherlands.

Published: July 2013

Before a mycelium of a mushroom-forming basidiomycete develops mushrooms, the monokaryotic mycelium needs to become fertilized. Although the mechanistic details of mating in mushrooms have been studied thoroughly in laboratory research, very little is known on mating patterns in nature. In this study, we performed fine-scale analyses of three populations of Schizophyllum commune from their natural substrate (i.e. dead beech branches). From the three branches, 24, 12, and 24 fruiting bodies were isolated and for each mushroom, the origins of its nuclei and cytoplasm were reconstructed using DNA markers. Nuclear genotypes were determined using sequencing data and mating types, and mitochondrial haplotypes using SNP markers. From these combined data we reconstructed colonization and mating patterns of the mycelia. On each branch, we found multiple dikaryons (3, 3, and 8, respectively); in two instances one nuclear haplotype was shared between two dikaryons and in two other cases a nuclear haplotype was shared between three dikaryons. Each dikaryon always had a single mitochondrial haplotype. These findings indicate that mating usually is not symmetrical and that a monokaryon is most likely fertilized by a small monokaryon, a spore or a dikaryon. Sharing of nuclear haplotype between different dikaryons resulted either from multiple fertilizations of a single monokaryon, if the dikaryons had identical mitochondrial haplotypes, or, if the dikaryons had different mitochondrial haplotypes, most likely from secondary matings between a monokaryon and a dikaryon (Buller phenomenon). We conclude that mating in S. commune between same-sized monokaryons with reciprocal migration, as generally described in textbooks, is rare in nature. We discuss the implications of non-symmetric mating for basidiomycete evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2013.04.009DOI Listing

Publication Analysis

Top Keywords

mitochondrial haplotypes
12
nuclear haplotype
12
schizophyllum commune
8
mating patterns
8
haplotype shared
8
mating
7
dikaryons
6
asymmetry mating
4
mating natural
4
natural populations
4

Similar Publications

Molecular evidence of (Pallas, 1781) in cockchafers in rural areas of Elazig, Türkiye.

J Helminthol

January 2025

Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Türkiye.

The primary definitive host of the giant acanthocephalan, also known as the giant thorny-headed worm (Pallas, 1781), is . The definitive host ingests the parasite by consuming infected scarabaeoid or hydrophilid beetles. This study aimed to ascertain the presence of in the intermediate hosts through molecular analysis.

View Article and Find Full Text PDF

Thrips palmi Karny (Thysanoptera: Thripidae), an impactful pest in Southeast and East Asia, spread to Africa, Oceania, and the Americas in the past decades. Besides being a principal pest of vegetables, legumes, fibre, and ornamental crops, T. palmi serves as the vector for several plant viruses that cause substantial economic losses.

View Article and Find Full Text PDF

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Considerable genetic diversity within Paragonimus heterotremus in Luang Prabang, northern Lao People's Democratic Republic.

Infect Genet Evol

January 2025

Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Paragonimiasis, caused by infection with lung flukes of the genus Paragonimus, remains a significant public health concern in Southeast Asia. In Lao People's Democratic Republic (Lao PDR), information on the distribution and genetic diversity of Paragonimus species is limited. This study investigated Paragonimus metacercariae in freshwater (mountain) crabs and analyzed their genetic diversity and phylogenetic relationships.

View Article and Find Full Text PDF

This research aimed to characterize the mitochondrial genome of the Ghoongroo (GH) pig, a notable breed in India, along with its crossbred varieties, to elucidate their matrilineal components, evolutionary history, and implications for conservation. Seven pigs (5 GH, 2 crossbred, namely Rani and Asha) were sequenced for complete mitochondrial genome, while 24 pigs (11 GH, 6 Rani, and 7 Asha) were sequenced for the complete D-loop of the mitochondrial genome. The genome size of these pigs was determined to be 16,690 bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!