We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.03.038DOI Listing

Publication Analysis

Top Keywords

dynamics ligand-receptor
8
ligand-receptor binding
8
probe
7
brownian nanoimaging
4
nanoimaging interface
4
interface dynamics
4
binding cell
4
cell surfaces
4
surfaces 3-d
4
3-d describe
4

Similar Publications

Background: Patients with hepatic encephalopathy (HE) have many triggers and a high mortality rate. The protective effect of existing therapeutic drugs on the liver is weak. We found that Danggui Shaoyao Powder can improve the symptoms of HE and may have a better liver protection effect.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with significant morbidity and mortality. Inflammation has been implicated in the pathogenesis of AF, but the causal relationship between specific inflammatory proteins and AF risk is not well established. This study aims to clarify this relationship using a bidirectional two-sample Mendelian Randomization (TSMR) approach.

View Article and Find Full Text PDF

Probing living cell dynamics and molecular interactions using atomic force microscopy.

Biophys Rev

December 2024

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, 1348 Louvain-la-Neuve, Belgium.

Atomic force microscopy (AFM) has emerged as a powerful tool for studying biological interactions at the single-molecule level, offering unparalleled insights into receptor-ligand dynamics on living cells. This review discusses key developments in the application of AFM, highlighting its ability to capture nanomechanical properties of cellular surfaces and probe dynamic interactions, such as virus-host binding. AFM's versatility in measuring mechanical forces and mapping molecular interactions in near-physiological conditions is explored.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.

View Article and Find Full Text PDF

Lung cancer is a type of cancer that begins in the lungs and is one of the leading causes of cancer-related deaths worldwide. Herein an attempt to explore the relationship between the properties of indolone derivatives and their anticancer activity was investigated, implementing in silico approaches. Four indolone derivatives with the highest anticancer potential were selected to evaluate their pharmacological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!