The impact of hemodynamic stress on sensory signal processing in the rodent lateral geniculate nucleus.

Brain Res

Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.

Published: June 2013

Hemodynamic stress via hypotensive challenge has been shown previously to cause a corticotropin-releasing factor (CRF)-mediated increase in tonic locus coeruleus (LC) activity and consequent release of norepinephrine (NE) in noradrenergic terminal fields. Although alterations in LC-NE can modulate the responsiveness of signal processing neurons along sensory pathways, little is understood regarding how continuous CRF-mediated activation of LC-NE output due to physiologically relevant stressor affects downstream target cell physiology. The goal of the present study was to investigate the effects of a physiological stressor [hemodynamic stress via sodium nitroprusside (SNP) i.v.] on stimulus evoked responses of sensory processing neurons that receive LC inputs. In rat, the dorsal lateral geniculate nucleus (dLGN) of the thalamus is the primary relay for visual information and is a major target of the LC-NE system. We used extracellular recording techniques in the anesthetized rat monitor single dLGN neuron activity during repeated presentation of light stimuli before and during hemodynamic stress. A significant decrease in magnitude occurred, as well as an increase in latency of dLGN stimulus-evoked responses were observed during hemodynamic stress. In another group of animals the CRF antagonist DpheCRF12-41 was infused onto the ipsilateral LC prior to SNP administration. This infusion blocked the hypotension-induced changes in dLGN stimulus-evoked discharge. These results show that CRF-mediated increases in LC-NE due to hemodynamic stress disrupts the transmission of information along thalamic-sensory pathways by: (1) initially reducing signal transmission during onset of the stressor and (2) decreasing the speed of stimulus evoked sensory transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529672PMC
http://dx.doi.org/10.1016/j.brainres.2013.04.043DOI Listing

Publication Analysis

Top Keywords

hemodynamic stress
20
signal processing
8
lateral geniculate
8
geniculate nucleus
8
processing neurons
8
stimulus evoked
8
dlgn stimulus-evoked
8
stress
6
impact hemodynamic
4
sensory
4

Similar Publications

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Background/objectives: Both hyperandrogenism (HA) and vitamin D deficiency (VDD) can separately lead to impaired vascular reactivity and ovulatory dysfunction in fertile females. The aim was to examine the early interactions of these states in a rat model of PCOS.

Methods: Four-week-old adolescent female rats were divided into four groups: vitamin D (VD)-supplemented ( = 12); VD-supplemented and testosterone-treated ( = 12); VDD- ( = 11) and VDD-and-testosterone-treated ( = 11).

View Article and Find Full Text PDF

Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge.

View Article and Find Full Text PDF

Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.

View Article and Find Full Text PDF

Cirrhotic cardiomyopathy (CCM) is a diagnostic entity defined as cardiac dysfunction (diastolic and/or systolic) in patients with liver cirrhosis, in the absence of overt cardiac disorder. Pathogenically, CCM stems from a combination of systemic and local hepatic factors that, through hemodynamic and neurohormonal changes, affect the balance of cardiac function and lead to its remodeling. Vascular changes in cirrhosis, mostly driven by portal hypertension, splanchnic vasodilatation, and increased cardiac output alongside maladaptively upregulated feedback systems, lead to fluid accumulation, venostasis, and cardiac dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!