Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors.

Neuropharmacology

Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.

Published: September 2013

AI Article Synopsis

  • The medial prefrontal cortex (mPFC) is important for controlling anxiety, but it's not clear how certain chemical signals in a specific part of it (the infralimbic or IL cortex) affect anxiety behaviors.
  • Experiments showed that activating the IL cortex made mice less likely to explore and more anxious, while turning it off made them less anxious.
  • Differences in brain activity were found between anxious and less anxious mice, suggesting that an imbalance in chemical signals might be a reason why some mice experience more anxiety than others.

Article Abstract

The medial prefrontal cortex (mPFC) has been implicated in modulating anxiety. However, it is unknown whether excitatory or inhibitory neurotransmission in the infralimbic (IL) subregion of the mPFC underlies the pathology of anxiety-related behavior. To address this issue, we infused the GABAA receptor (GABAAR) antagonist bicuculline to temporarily activate the IL cortex. IL cortex activation decreased the time spent in the center area in the open field test, decreased exploration of the open-arms in the elevated plus maze test, and increased the latency to bite food in the novelty-suppressed feeding test. These findings substantiate the GABAergic system's role in anxiety-related behaviors. IL cortex inactivation with the AMPA receptor (AMPAR) antagonist CNQX produced opposite, anxiolytic effects. However, infusion of the NMDA receptor (NMDAR) antagonist AP5 into the IL cortex had no significant effect. Additionally, we did not observe motor activity deficits or appetite deficits following inhibition of GABAergic or glutamatergic neurotransmission. Interestingly, we found parallel and corresponding electrophysiological changes in anxious mice; compared to mice with relatively low anxiety, the relatively high anxiety mice exhibited smaller evoked inhibitory postsynaptic currents (eIPSCs) and larger AMPA-mediated evoked excitatory postsynaptic currents (eEPSCs) in pyramidal neurons in the IL cortex. The changes of eIPSCs and eEPSCs were due to presynaptic mechanisms. Our results suggest that imbalances of neurotransmission in the IL cortex may cause a net increase in excitatory inputs onto pyramidal neurons, which may underlie the pathogenic mechanism of anxiety disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2013.04.048DOI Listing

Publication Analysis

Top Keywords

cortex
8
postsynaptic currents
8
pyramidal neurons
8
enhanced excitability
4
excitability infralimbic
4
infralimbic cortex
4
cortex produces
4
produces anxiety-like
4
anxiety-like behaviors
4
behaviors medial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!