The appearance of a decisive component of the sexual response to chemosexual signals in the male donkey was investigated through a comparison of the variations in the time-span of the behavioral classes and units for the natural versus induced breeding seasons. The results demonstrate that there are significant variations in the length of the appetitive sexual behavior (ASB) and consummatory sexual behavior (CSB) under these two reproductive conditions. These differences are analyzed for the ASB, which is adaptable, compared with the stereotyped CSB. For the ASB, male isolation is the most represented behavior of both the natural and induced breeding seasons. This is the key that allows the passage from courtship, which consists of appetitive behaviors, to copula, the consummatory behavior. This isolation appears to provide the time required to activate the hypothalamic-pituitary-gonadal axis through the chemosexual pathway of pheromone stimuli. This isolation is lengthened with induced breeding, supporting the hypothesis of the activation of the neuroendocrine system, which is not 'primed' outside the natural breeding season, and which is necessary to release the stereotyped CSB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2013.04.005 | DOI Listing |
Vet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China. Electronic address:
Antimicrobial peptides (AMPs) are small, potent molecules that serve as a crucial first line of defense across a wide range of organisms, including fish. In this study, we investigated the antimicrobial properties of a novel peptide, spanning residues 52 to 80 of the full-length histone H2A protein, comprising a total of 29 amino acids. This peptide, designated as Histone H2A-29 (TroH2A-29), was derived from the golden pompano (Trachinotus ovatus) and evaluated for its activity against both Gram-positive bacteria, Lactococcus garvieae and Staphylococcus epidermidis, and Gram-negative bacteria, Vibrio alginolyticus and Vibrio harveyi.
View Article and Find Full Text PDFPLoS One
January 2025
School of Natural Sciences, Macquarie University, Macquarie Park, Sydney, Australia.
Saffron (Crocus sativus L.) has held significant cultural and medicinal value since the Greek-Minoan civilization. As a triploid spice with vegetative propagation from the Iridaceae family, the three-branch style of C.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!