In simple polarized epithelial cells, the Rho GTPase commonly localizes to E-cadherin-based cell-cell junctions, such as the zonula adherens (ZA), where it regulates the actomyosin cytoskeleton to support junctional integrity and tension. An important question is how E-cadherin contributes to Rho signaling, notably whether junctional Rho may depend on cadherin adhesion. We sought to investigate this by assessing Rho localization and activity in epithelial monolayers depleted of E-cadherin by RNAi. We report that E-cadherin depletion reduced both Rho and Rho-GTP at the ZA, an effect that was rescued by expressing a RNAi-resistant full-length E-cadherin transgene. This impact on Rho signaling was accompanied by reduced junctional localization of the Rho GEF ECT2 and the centralspindlin complex that recruits ECT2. Further, the Rho signaling pathway contributes to the selective stabilization of E-cadherin molecules in the apical zone of the cells compared with E-cadherin at the lateral surface, thereby creating a more defined and restricted pool of E-cadherin that forms the ZA. Thus, E-cadherin and Rho signaling cooperate to ensure proper ZA architecture and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diff.2013.01.002 | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Laboratory Medicine, Linyi People's Hospital, Linyi, Shandong, China
Objective: C-X-C motif chemokine receptor 2 (CXCR2) plays a crucial role in inflammation and immunity, and the involvement of chemokine receptors in the tumor microenvironment is extensively documented. However, the impact of CXCR2 deficiency on the complete transcriptome, including mRNA and ncRNAs, in tumor cells remains unclear.
Methods: In this study, we aimed to identify differentially expressed (DE) messenger RNA (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in CXCR2 knockout HeLa cells through transcriptome sequencing and to construct regulatory networks.
Objective: Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.
Methods: Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals.
PLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!