A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models. | LitMetric

Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.

Chemosphere

Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India.

Published: July 2013

Four quantitative prediction models for steady-state compartmental chemical mass concentrations (Wn,g) were obtained from structural information, physiochemical properties, degradation rate and transport coefficients of 455 diverse organic chemicals using chemometric tools in a quantitative structure-fate relationship (QSFR) study. The mass ratio assessment of environmentally prevalent organic chemicals may be helpful to predict their toxicological fate in the ecosystems. Four sets of mass ratios [(1) log(Wair) from water emissions (water to air compartment), (2) log(Wair) from air emissions (within different zones of the air compartment), (3) log(Wwater) from water emissions (within different zones of the water compartment) and (4) log(Wwater) from air emissions (air to water compartment)] have been used. The developed models using genetic function approximation followed by multiple linear regression (GFA-MLR) and subsequent partial least squares (PLS) treatment identify only four descriptors for log(Wair) from water emission, six descriptors for log(Wair) from air emission, five descriptors for log(Wwater) from water emission and seven descriptors for log(Wwater) from air emission for predicting efficiently a large number of test set chemicals (ntest=182). The conclusive models suggest that descriptors such as partition coefficients (Kaw, Kow and Ksw), degradation parameters (Ksoil,Kwater and Kair), vapor pressure (Pv), diffusivity (Dwater), spatial descriptors (Jurs-WNSA-1, Jurs-WNSA-2, Jurs-WPSA-3, Jurs-FNSA-3 and Density), thermodynamic descriptors (MolRef and AlogP98), electrotopological state indices (S_dsN, S_ssNH and S_dsCH) are important for predicting the chemical mass ratios. The developed models may be applicable in toxicological fate prediction of diverse chemicals in the ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.03.065DOI Listing

Publication Analysis

Top Keywords

toxicological fate
12
organic chemicals
12
chemical mass
12
emission descriptors
12
fate prediction
8
prediction diverse
8
diverse organic
8
steady-state compartmental
8
compartmental chemical
8
mass ratio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!