Microfluidics and coagulation biology.

Annu Rev Biomed Eng

Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: February 2014

The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices, which constrain fluids to a small (typically submillimeter) scale, facilitate analysis of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, and pharmacology and, as a result, can be an invaluable tool for clinical diagnostics. An experimental session can accommodate hundreds to thousands of unique clotting, or thrombotic, events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor, under constant flow rate or constant pressure drop conditions. Distinct shear rates can be generated on a device using a single perfusion pump. Microfluidics facilitated both the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidic devices are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935341PMC
http://dx.doi.org/10.1146/annurev-bioeng-071812-152406DOI Listing

Publication Analysis

Top Keywords

coagulation biology
8
flow microfluidic
8
microfluidic devices
8
clinical diagnostics
8
thrombotic events
8
microfluidics coagulation
4
biology study
4
study blood
4
blood vivo
4
vivo occur
4

Similar Publications

Multi-Gene Panel for Thrombophilia Testing in Venous Thromboembolism.

J Thromb Haemost

January 2025

Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.

Background: Conventional tests for inherited thrombophilia focus on the five most-established inherited thrombophilias; i.e. deficiencies in antithrombin, protein C, and protein S, and the factor V Leiden and prothrombin G20210A variants.

View Article and Find Full Text PDF

DHAV-3 is one of the main causative agents of duck viral hepatitis (DVH), an acute and highly lethal infectious disease in duck industry. However, the understanding of the pathogenesis of this virus in ducklings is limited. To dissect the molecular characteristics associated with pathobiology of ducklings to DHAV-3, we applied single-cell RNA-sequencing approach to profile the transcriptome of 1.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Despite the high progress that has been made in the field of cardiology, the left ventricular assist device (LVAD) can still cause complications (thrombosis/bleeding) in heart failure (HF) patients after implantation. Complications develop due to the incorrect dose of antithrombotic therapy, due to the influence of the non-physiological shear stress of the device, and also due to inherited genetic polymorphisms. Therefore, the aim of our study is to identify the influence of the genetic polymorphisms on complication development in HF patients with implanted LVADs with prescribed antiplatelet therapy.

View Article and Find Full Text PDF

Background: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!