Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A comprehensive study of the adsorption of the compounds involved in the reaction of dehydration of fructose to 5-hydroxymethyl furfural (HMF) on the zeolite H-BEA with SiO2/Al2O3 = 18 has been carried out. Furthermore, a method for the estimation of the real adsorption loading from the experimentally measured excess adsorption is developed and applied to calculate the adsorption isotherms both in the case of single-solute and multisolute mixtures. It was found that zeolite H-BEA adsorbs HMF and levulinic acid from water mixtures to greater extent than sugars and formic acid, which prefer to partition in the aqueous phase. HMF and levulinic acid adsorption isotherms could be fitted in a Redlich-Peterson isotherm model, while the adsorption of formic acid is better fitted using the Freundlich model and sugars via the Henry model. Adsorption loadings decreased with increasing temperature (0, 25, and 40 °C), which is characteristic of an exothermic process. From the temperature dependence of the isotherms, the limiting heat of adsorption at zero coverage was determined using van't Hoff equation. Given the importance and the complexity of multicomponent systems, several experiments of adsorption of multisolute solutions have been carried out. In most of the cases, the ideal adsorbed solution theory (IAST) has been proven to satisfactorily predict adsorption from multisolute mixtures using as input the single-solute isotherms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la401138g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!