AI Article Synopsis

  • Mice with the A(y) allele show differing obesity patterns based on genetic background; specifically, DDD.Cg-A(y) males exhibit lower body weight due to weight loss after 16 weeks.
  • Significant quantitative trait loci (QTL) linked to body weight were found on chromosomes 1 and 4, with the DDD allele associated with lower body weight and higher plasma glucose levels.
  • The study suggests that diabetes may contribute to the observed weight loss in DDD.Cg-A(y) males, highlighting the complex genetics at play.

Article Abstract

Background: Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males.

Results: Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males.

Conclusions: The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669036PMC
http://dx.doi.org/10.1186/1471-2156-14-35DOI Listing

Publication Analysis

Top Keywords

body weight
56
weight loss
24
lower body
16
weight
15
body
14
adiponectin levels
12
genetic background
8
male mice
8
mice carrying
8
carrying allele
8

Similar Publications

Monocarboxylates, transported by monocarboxylate transporters (MCTs), have been proposed to influence energy homeostasis and exhibit altered metabolism during exercise. This study investigated the association between the Asp490Glu (T1470A) (rs1049434) polymorphism of the SLC16A1 (MCT1) gene and changes in body composition in males and females with overweight or obesity. The 173 participants (56.

View Article and Find Full Text PDF

Background: Despite the recent steep rise in the use of prepectoral direct-to-implant (DTI) breast reconstruction, concerns remain regarding the potentially risk of complications, resulting in the selective application of the technique; however, the selection process was empirically based on the operator's decision. Using patient and operation-related factors, this study aimed to develop a nomogram for predicting postoperative complications following prepectoral DTI reconstruction.

Methods: Between August 2019 and March 2023, immediate prepectoral DTI was performed for all patients deemed suitable for one-stage implant-based reconstruction.

View Article and Find Full Text PDF

To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion.

View Article and Find Full Text PDF

Current evidence indicates that obesity may initiate psoriasis or worsen existing disease. Various factors contribute to the development of obesity, including eating disorders (EDs). The aim of this study was to screen for and identify factors associated with EDs in patients with psoriasis and their impact on the development of obesity in this population.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!