Purpose: It was previously shown that the bacterial two-component regulatory signal transduction (2CR) system MtrAB may be associated with the ability of M. tuberculosis (Mtb) to survive in macrophages. In the present work Mtb mutants: Rv-78 with overexpression of mtrA and Rv-129 with elevated level of phosphorylation-defective MtrA were used for further investigation of the potential influence of the MtrAB system on Mtb interaction with human monocytes.
Material/methods: Flow cytometry was used to determine the expression of MHC class II molecules. The expression of genes for inducible nitric oxide synthase (iNOS) and cathepsin G was quantified by RT-PCR. The association of Mtb strains with Rab5 and Rab7 positive vacuoles was investigated applying confocal microscopy. IL-10 and IL-12 secretion by monocytes as well as the Mtb susceptibility to cathepsin G were investigated.
Results: Mutation-carried and wild type Mtb strains inhibited MHC class II expression on monocytes to a similar extent. Monocyte stimulation with mycobacteria led to the increased production of IL-10 but no detectable amounts of IL-12 or NO were observed. Expression of the gene for iNOS was not detected while that for cathepsin G was shown, however its intensity was not associated with MtrA mutation. Mtb mutant strains were more effectively enclosed in phagosomes containing the late endosome marker Rab7 as compared to the control.
Conclusions: The results may confirm the importance of the MtrAB system in mycobacterial capacity for successful survival in phagocytes, especially in the context of high degree of colocalization of Mtb Rv-78 to mature phagosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2478/v10039-012-0058-y | DOI Listing |
Microbiol Spectr
January 2025
Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
Tongue swabs represent a potential alternative to sputum as a sample type for detecting pulmonary tuberculosis (TB) with molecular diagnostic tests. The methods used to process tongue swabs for testing in the World Health Organization-recommended Xpert MTB/RIF Ultra (Xpert Ultra) assay vary greatly. Here, we aimed to identify the optimal tongue swab processing for Xpert Ultra testing.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.
Background: Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to (Mtb) in patients with TBI and TB disease.
Methods: We enrolled TBI and TB patients with and without IMID.
Infect Drug Resist
January 2025
Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
We present a rare case of asymptomatic allergic bronchopulmonary aspergillosis (ABPA) concurrent with active pulmonary tuberculosis. Allergic bronchopulmonary aspergillosis is an immunological pulmonary disorder characterized by hypersensitivity to Aspergillus fumigatus, while pulmonary tuberculosis (PTB) is a complex infection caused by Mycobacterium tuberculosis (MTB). The association between pulmonary tuberculosis infections and Aspergillus infections remains a fascinating area of inquiry.
View Article and Find Full Text PDFThe mycomembrane of mycobacteria has long been regarded as the primary barrier to the accumulation of molecules within these bacteria. Understanding accumulation beyond the mycomembrane of ( ) is crucial for developing effective antimycobacterial agents. This study investigates two design principles commonly found in natural products and mammalian cell-permeable peptides - backbone -methylation and macrocyclization - aimed at enhancing accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!