A strain of Bacillus licheniformis with high exopolysaccharide (EPS) production ability was isolated and identified. A new type of EPS was isolated from the strain fermentation and its structural characteristics were investigated and elucidated by partial and total acid hydrolysis, Fourier transform infrared, and (1)H and (13)C NMR spectroscopy including 2D (1)H, COSY, NOESY, XHCOR and HMBC experiments. Based on obtained data, the EPS was found to be a levan composed of linear chains of (2→6)-linked β-d-fructofuranosyl residues with connections β (2→6).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2013.04.036 | DOI Listing |
J Imaging Inform Med
January 2025
Department of Radiation Oncology, Henry Ford Health, Detroit, MI, USA.
Automatic segmentation of angiographic structures can aid in assessing vascular disease. While recent deep learning models promise automation, they lack validation on interventional angiographic data. This study investigates the feasibility of angiographic segmentation using in-context learning with the UniverSeg model, which is a cross-learning segmentation model that lacks inherent angiographic training.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.
This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St., Philadelphia, PA, 19104, USA.
Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information.
View Article and Find Full Text PDFBehav Res Methods
January 2025
CogNosco Lab, Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy.
We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!