There is increasing evidence that papillomaviruses (PVs) may cause skin cancer in cats. Neoplasms most frequently contain Felis domesticus PV type 2 (FdPV-2) DNA, but other PV DNA sequences have also been detected suggesting multiple PVs could cause disease. One of these sequences, FdPV-MY2, was previously detected in 5 of a series of 70 feline skin cancers. The aim was to determine the genome sequence of this PV. Using the circular nature of PV DNA, 'outward facing' primers specific for FdPV-MY2 were designed and amplified a 7300 bp length of DNA from a feline Bowenoid in situ carcinoma (BISC) that showed microscopic evidence of a viral etiology and tested positive for FdPV-MY2 DNA. The PCR product was sequenced using next generation sequencing technology. The full genomic sequence of the virus, comprising 7583 bp, was assembled and analyzed. As this is the third PV from a domestic cat, the virus was designated Felis catus PV type 3 (FcaPV-3). Consistent with other PVs, the putative coding regions of FcaPV-3 were predicted to produce 6 early proteins and 2 late ones. Classification was difficult as the virus contained over 60% nucleotide similarity within the ORF L1 with PVs from 3 different genera. However, based on phylogenetic analysis of ORF L1, FcaPV-3 was most closely related to the tau-PVs CPV-2 and CPV-7. As FcaPV-3 has over 60% nucleotide similarity with the ORF L1 of both tau-PVs, it is proposed that FcaPV-3 is classified in the genus Taupapillomavirus and is the first non-canine PV in this genus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2013.04.006DOI Listing

Publication Analysis

Top Keywords

felis catus
8
feline bowenoid
8
bowenoid situ
8
situ carcinoma
8
60% nucleotide
8
nucleotide similarity
8
similarity orf
8
dna
5
fcapv-3
5
genomic characterization
4

Similar Publications

Objective: Enhancing ventilatory effort during pulmonary function testing can help reveal flow limitations not evident in normal tidal breathing. This study aimed to assess the efficacy and tolerability of using a CO2/O2 gas mixture to enhance tidal breathing with a barometric whole-body plethysmography system in both healthy cats and those with feline lower airway disease (FLAD).

Methods: This prospective study included healthy cats and those with FLAD, which underwent pulmonary function testing and were exposed to a 10% CO2/90% O2 gas mixture in a barometric whole-body plethysmography chamber, with CO2 concentrations maintained within the target range of 5% to 10%.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the clinical and radiologic findings in the treatment of live oligotrophic and pseudoarthrosis nonunions in cats using a linear external fixator.

Methods: The study included 10 cats of various breeds, ages, and sexes that had previously undergone osteosynthesis at another clinic but did not achieve successful results. These cats were diagnosed with nonunion based on clinical and radiographic examinations conducted at the Clinic of the Surgery Department, Siirt University Animal Health Practice and Research Hospital between 2022 and 2023.

View Article and Find Full Text PDF

Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019.

View Article and Find Full Text PDF

There has been an increased interest in standardized approaches to coding facial movement in mammals. Such approaches include Facial Action Coding Systems (FACS), where individuals are trained to identify discrete facial muscle movements that combine to create a facial configuration. Some studies have utilized FACS to analyze facial signaling, recording the quantity of morphologically distinct facial signals a species can generate.

View Article and Find Full Text PDF

Local health departments can play a critical role in zoonoses surveillance at the human-domestic animal interface, especially when existing public health services and close relationships with community groups can be leveraged. Investigators at Harris County Veterinary Public Health employed a community-based surveillance tool for identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in dogs and cats in June--December 2021. Diagnosis was made using both RT-qPCR testing of oral and nasal swabs and plaque reduction neutralization testing of serum samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!