RNA-mediated gene suppression and in vitro culture in Hymenolepis microstoma.

Int J Parasitol

Department of Zoology, The Natural History Museum, London, United Kingdom.

Published: July 2013

Hymenolepis microstoma, the mouse bile-duct tapeworm, is a classical rodent-hosted model that provides easy laboratory access to all stages of the life cycle. Recent characterisation of its genome has greatly advanced its utility for molecular research, albeit contemporary techniques such as those for assaying gene function have yet to be developed in the system. Here we present research on the development of RNA-mediated gene suppression via RNA interference (RNAi), and on in vitro culture of the enteric, adult phase of the life cycle to support this work. We demonstrate up to 80% quantitative suppression of a Hox transcript via soaking activated juvenile worms with double-stranded RNAs. However, we were unable to achieve segmentation of the worms in culture despite extensive manipulations of the culture media and supplements, preventing functional interpretation. An alternative, in vivo approach to RNAi was also tested by exposing cysticercoids prior to inoculation in mice, but fluorescent labelling showed that the RNAs did not sufficiently penetrate the cyst body and no difference in expression was found between exposed and control groups grown in vivo. Genomic and transcriptomic data revealed that H. microstoma has two orthologs each of Dicer, Drosha and Ago-1-like genes and that expression of one of the Ago-1 genes appears exclusive to germline development, suggesting that two or more independent RNA-mediated pathways are in operation. These studies demonstrate the viability of RNAi in H. microstoma and extend the utility of the model for research in the genomic era.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2013.03.004DOI Listing

Publication Analysis

Top Keywords

rna-mediated gene
8
gene suppression
8
vitro culture
8
hymenolepis microstoma
8
life cycle
8
suppression vitro
4
culture
4
culture hymenolepis
4
microstoma
4
microstoma hymenolepis
4

Similar Publications

Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.

View Article and Find Full Text PDF

A pipeline for validation of Serendipita indica effector-like sRNA suggests cross-kingdom communication in the symbiosis with Arabidopsis.

J Exp Bot

December 2024

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.

Bidirectional communication between pathogenic microbes and their plant hosts via small (s)RNA-mediated cross-kingdom RNA interference (ckRNAi) is a key element for successful host colonisation. Whether mutualistic fungi of the Serendipitaceae family, known for their extremely broad host range, use sRNAs to colonize plant roots is still under debate. To address this question, we developed a pipeline to validate the accumulation, translocation, and activity of fungal sRNAs in post-transcriptional silencing of Arabidopsis thaliana genes.

View Article and Find Full Text PDF

BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells.

View Article and Find Full Text PDF

Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • MACC1 is a newly identified factor in lung cancer that promotes the transition of non-cancer stem cells (non-CSCs) to cancer stem cells (CSCs), which play a key role in tumor growth.
  • High levels of MACC1 are found in stemness-enriched lung cancer cells, and reducing MACC1 expression through shRNA effectively halts this transition.
  • The study suggests that MACC1 stabilizes KLF4 mRNA by inhibiting microRNA-25, and understanding this relationship could lead to targeted therapies for cancer stem cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!