Organobase-catalyzed amidation of esters with amino alcohols.

Org Lett

Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K., and AstraZeneca , Oncology Innovative Medicines Unit, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K.

Published: May 2013

AI Article Synopsis

  • A new method is introduced for converting unactivated esters into amides using amino alcohols, driven by a base.
  • The process has been optimized to improve efficiency and involves various examples showcasing its effectiveness.
  • The reaction yields products ranging from 40% to 100% when isolated, indicating a successful catalytic process.

Article Abstract

A base-mediated procedure for the amidation of unactivated esters with amino alcohols is reported. Optimization and exemplification of the catalytic process are described, furnishing products in 40-100% isolated yield.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol400987pDOI Listing

Publication Analysis

Top Keywords

esters amino
8
amino alcohols
8
organobase-catalyzed amidation
4
amidation esters
4
alcohols base-mediated
4
base-mediated procedure
4
procedure amidation
4
amidation unactivated
4
unactivated esters
4
alcohols reported
4

Similar Publications

Zinc benzoates may provide an element of tunability that is not available to their ubiquitous acetate analogues. Unfortunately, the synthesis, speciation, and coordination chemistry of zinc benzoates are less developed than the acetates. In this study, we systematically investigate zinc benzoates to understand their propensity to favor solvate (Zn(OCAr)(L)) or cluster (ZnO(OCAr)) formation as well as their utility as metal complex precursors.

View Article and Find Full Text PDF

A multi-component method for the synthesis of pyrimido[5,4-]azolo[1,5-]pyrimidines and pyrimido[4,5-][1,2,4]triazolo[5,1-][1,2,4]triazines has been developed. It was shown that vicinal amino-nitrile and amino-ethoxycarbonyl derivatives of azolo[1,5-]pyrimidines and azolo[5,1-][1,2,4]triazines were converted to tricyclic heterocycles in the "AcOH-RC(OEt)-amine" system. Reaction conditions were optimized, patterns of this process were investigated, and intermediates were isolated.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

A Protocol for GC-MS Profiling of Chiral Secondary Amino Acids.

Methods Mol Biol

January 2025

Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.

A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.

View Article and Find Full Text PDF

Spirocyclic alkyl amino carbene (SCAAC) Ru complexes demonstrate outstanding activity and selectivity in ethenolysis of methyl oleate (MO) or fatty acid methyl esters (FAMEs), and 5,6-dimethoxyindane derivative was the most active catalyst to date. For the further catalyst design, we proposed modifying the spirocyclic fragment by fusion of saturated carbo- or heterocycle, linked to the 5,6-positions of indane or 6,7- positions of tetralin. Another suggested way of the modification of SCAAC complex was the insertion of chromane fragment to the carbene ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!