Precise cellular targeting of macromolecular cargos has important biotechnological and medical implications. Using a recently established 'protein stapling' method, we linked the proteolytic domain of botulinum neurotoxin type A (BoNT/A) to a selection of ligands to target neuroendocrine tumor cells. The botulinum proteolytic domain was chosen because of its well-known potency to block the release of neurotransmitters and hormones. Among nine tested stapled ligands, the epidermal growth factor was able to deliver the botulinum enzyme into pheochromocytoma PC12 and insulinoma Min6 cells; ciliary neurotrophic factor was effective on neuroblastoma SH-SY5Y and Neuro2A cells, whereas corticotropin-releasing hormone was active on pituitary AtT-20 cells and the two neuroblastoma cell lines. In neuronal cultures, the epidermal growth factor- and ciliary neurotrophic factor-directed botulinum enzyme targeted distinct subsets of neurons whereas the whole native neurotoxin targeted the cortical neurons indiscriminately. At nanomolar concentrations, the retargeted botulinum molecules were able to inhibit stimulated release of hormones from tested cell lines suggesting their application for treatments of neuroendocrine disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758956PMC
http://dx.doi.org/10.1111/jnc.12284DOI Listing

Publication Analysis

Top Keywords

proteolytic domain
8
hormones tested
8
epidermal growth
8
botulinum enzyme
8
ciliary neurotrophic
8
cell lines
8
cells
5
botulinum
5
stapling botulinum
4
botulinum type
4

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Adeptrix Corp, Beverly, MA, USA.

Background: The rapidly growing pipeline of target-specific Alzheimer's Disease (AD) therapeutic candidates requires accompanying tests that can identify patients likely to have a beneficial response. The growing importance of multiple pathologies in determining AD progression and treatment response underscores this need. Our work focuses on establishing analytical capability to expand detectable forms of major protein drug targets for AD: Tau, amyloid beta (Ab) and a-Synuclein (aS) proteoforms as potential personalized molecular signatures.

View Article and Find Full Text PDF

Background: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.

View Article and Find Full Text PDF

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

The SARS-CoV-2 main protease (M or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 M. TRMT1 installs the ,-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis.

View Article and Find Full Text PDF

The functionalization of protein sidechains with highly water-soluble chlorotriazines (or derivatives thereof) using nucleophilic aromatic substitution reactions has been commonly employed to install various functional groups, including poly(ethylene glycol) tags or fluorogenic labels. Here, a poorly soluble dichlorotriazine with an appended indole is shown to react with a construct containing the disordered domain of BRCA1. Subsequently, this construct can undergo proteolytic cleavage to remove the SUMO-tag: the -terminal poly(His) tag is still effective for purification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!