Surfactants in current clinical use are largely ineffective in treating acute lung injury (ALI)/ acute respiratory distress syndrome. In part, this ineffectiveness is due to inactivation of surfactant by serum leakage into the alveoli. Previously, we reported that adding hyaluronan and some nonionic polymers to synthetic lipids combined with native SP-B and SP-C enhanced surface activity. In this study, we first tested two therapeutic lung surfactants and then retested after adding hyaluronan, polyethylene glycol or dextran alone or in two-polymer combinations including hyaluronan in the absence or presence of serum. Surface activities were measured in a modified bubble surfactometer. Results indicate that the inhibition threshold (defined as the amount of serum required to produce a minimum surface tension above 10 mN/m after 5 minutes of cycling) was 35 times higher with hyaluronan plus dextran added to Infasurf than with Infasurf alone, and better than all other mixtures tested. The threshold for Survanta with hyaluronan plus polyethylene glycol was 7 times higher than Survanta alone. We next tested selected surfactant mixtures in an animal model that mimicked ALI. All measurements of lung function showed significant improvement (P ≤ .05) with hyaluronan, or with hyaluronan and dextran added to Infasurf compared to Infasurf alone. Also, for these two groups, lung function was still improving at the end of the experiment. We conclude that certain polymers added to clinical surfactants can greatly increase resistance to inactivation in vitro, while in vivo, both Infasurf mixtures containing hyaluronan tended to normalize measures of lung function unlike other mixtures tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/01902148.2013.791893 | DOI Listing |
Bioact Mater
April 2025
Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.
View Article and Find Full Text PDFGels
January 2025
Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, Level 2, 1190 Vienna, Austria.
Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.
View Article and Find Full Text PDFCells
January 2025
European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
Hyaluronan (HA) levels are dynamically regulated homeostatically through biosynthesis and degradation. HA homeostasis is often perturbed under disease conditions. HA degradation products are thought to contribute to disease pathology.
View Article and Find Full Text PDFHeliyon
January 2025
Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China. Electronic address:
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!