Background: Environmental factors such as temperature can alter mosquito vector competence for arboviruses. Results from recent studies indicate that daily fluctuations around an intermediate mean temperature (26°C) reduce vector competence of Aedes aeygpti for dengue viruses (DENV). Theoretical predictions suggest that the mean temperature in combination with the magnitude of the diurnal temperature range (DTR) mediate the direction of these effects.
Methodology/principal Findings: We tested the effect of temperature fluctuations on Ae. aegypti vector competence for DENV serotype-1 at high and low mean temperatures, and confirmed this theoretical prediction. A small DTR had no effect on vector competence around a high (30°C) mean, but a large DTR at low temperature (20°C) increased the proportion of infected mosquitoes with a disseminated infection by 60% at 21 and 28 days post-exposure compared to a constant 20°C. This effect resulted from a marked shortening of DENV extrinsic incubation period (EIP) in its mosquito vector; i.e., a decrease from 29.6 to 18.9 days under the fluctuating vs. constant temperature treatment.
Conclusions: Our results indicate that Ae. aegypti exposed to large fluctuations at low temperatures have a significantly shorter virus EIP than under constant temperature conditions at the same mean, leading to a considerably greater potential for DENV transmission. These results emphasize the value of accounting for daily temperature variation in an effort to more accurately understand and predict the risk of mosquito-borne pathogen transmission, provide a mechanism for sustained DENV transmission in endemic areas during cooler times of the year, and indicate that DENV transmission could be more efficient in temperate regions than previously anticipated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636080 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0002190 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Geology and Mineral Science, Kwara State University, Malete, P.M.B. 1530, Ilorin, Kwara State, Nigeria.
Human-induced global warming, primarily attributed to the rise in atmospheric CO, poses a substantial risk to the survival of humanity. While most research focuses on predicting annual CO emissions, which are crucial for setting long-term emission mitigation targets, the precise prediction of daily CO emissions is equally vital for setting short-term targets. This study examines the performance of 14 models in predicting daily CO emissions data from 1/1/2022 to 30/9/2023 across the top four polluting regions (China, India, the USA, and the EU27&UK).
View Article and Find Full Text PDFParasit Vectors
January 2025
Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
Background: Faecal egg counts (FECs) are essential for diagnosing helminth infections and guiding treatment decisions. For camels, no evaluations of coproscopic methods regarding precision, sensitivity and correlation between individual and pooled faecal samples are currently available.
Methods: Here, 410 camel faecal samples were collected in 2022 from South Darfur State, Sudan, and analysed to compare the semi-quantitative flotation, McMaster and Mini-FLOTAC methods in terms of precision, sensitivity, inter-rater reliability and helminth egg count correlations, as well as the effects of pooling samples.
Sci Rep
January 2025
IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143, Florence, Italy.
Bioelectrical Impedance Vector Analysis (BIVA) is a valuable tool for evaluating hydration and body composition, but its application in subacute post-stroke patients remains unexplored. This study aimed to fill this gap by analyzing BIVA in a cohort of 87 subacute post-stroke patients (42 women, mean age 69 ± 12) undergoing rehabilitation. At admission (T0), diagnosis of malnutrition with GLIM criteria and of sarcopenia with EWGSOP2 was done, and patients were analyzed with BIVA.
View Article and Find Full Text PDFMalar J
January 2025
Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
Background: The current study sought to re-evaluate malaria prevalence, susceptibility to artemisinin-based combination therapy (ACT), transmission patterns and the presence of malaria vectors in the Kikuyu area of the Kenyan Central highlands, a non-traditional/low risk malaria transmission zone where there have been anecdotal reports of emerging malaria infections.
Methods: Sampling of adult mosquitoes was done indoors, while larvae were sampled outdoors in June 2019. The malaria clinical study was an open label non-randomized clinical trial where the efficacy of one ACT drug, was evaluated in two health facilities.
BMC Infect Dis
January 2025
Faculty of Medicine, Center for Zoonotic and Emerging Diseases HUMRC, Universitas Hasanuddin, Makassar, Indonesia.
Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.
Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!