Patients with Type 2 diabetes (T2D) are highly susceptible to infection and have an increased incidence of some tumors, possibly due to immune system dysfunction. In the innate cellular immune system, Natural Killer (NK) lymphocytes are important effectors responsible for controlling infections and combating tumor development. We analyzed NK cell subsets in 51 patients with long-standing T2D. Compared with healthy blood donors, diabetic patients showed a profound decrease in both NKG2D-positive NK cells (44% vs. 55.5%, P<0.01) and NKp46-positive cells (26% vs. 50%, P<0.01). Decreased expression of these receptors was associated with functional defects, such as reduced NK degranulation capacity when challenged with the tumor target cell line K562 (10.3 vs. 15.8%, P<0.05). This defect could be restored in vitro by stimulating NK cells from T2D patients with IL-15 (P<0.05). NKG2D expression was found to be negatively correlated with HBA1c level (r=-0.50; P=0.009), suggesting that sustained hyperglycemia could directly influence NK cell defects. We demonstrated that endoplasmic reticulum (ER) stress, an important mediator in diabetes-associated complications, was inducible in vitro in normal NK cells and that tunicamycin treatment resulted in a significant decrease in NKG2D expression (P<0.05). Furthermore, markers of the Unfolded Protein Response (UPR) BiP, PDI and sXBP1 mRNAs were significantly increased in NK cells from T2D patients (P<0.05, P<0.01, P<0.05, respectively), indicating that ER stress is activated in vivo through both PERK and IRE1 sensors. These results demonstrate for the first time defects in NK cell-activating receptors NKG2D and NKp46 in T2D patients, and implicate the UPR pathway as a potential mechanism. These defects may contribute to susceptibility to infections and malignancies and could be targetted therapeutically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636194 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062418 | PLOS |
Mol Cancer
January 2025
Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
Natural killer (NK) cell-driven effector mechanisms, such as antibody-dependent cell-mediated cytotoxicity, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human trials. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine-induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model.
View Article and Find Full Text PDFBackground: FT596 is an induced pluripotent stem-cell (iPSC)-derived chimeric antigen receptor (CAR) natural killer (NK) cell therapy with three antitumour modalities: a CD19 CAR; a high-affinity, non-cleavable CD16 Fc receptor; and interleukin-15-interleukin-15 receptor fusion. In this study, we aimed to determine the recommended phase 2 dose (RP2D) and evaluate the safety and tolerability of FT596 as monotherapy and in combination with rituximab. We also aimed to evaluate the antitumour activity and characterise the pharmacokinetics of FT596 as monotherapy and in combination with rituximab.
View Article and Find Full Text PDFStructure
January 2025
Novartis Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. Electronic address:
Inflammatory bowel disease (IBD) consists of chronic conditions that severely impact a patient's health and quality of life. Interleukin-10 (IL-10), a potent anti-inflammatory cytokine has strong genetic links to IBD susceptibility and has shown strong efficacy in IBD rodent models, suggesting it has great therapeutic potential. However, when tested in clinical trials for IBD, recombinant human IL-10 (rhIL-10) showed weak and inconsistent efficacy due to its short half-life and pro-inflammatory properties that counteract the anti-inflammatory efficacy.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. Electronic address:
Standard flow cytometry-based assays can determine the cytotoxicity of immune effector cells, but it is challenging to monitor the dynamic processes of cytotoxicity. Here, we present a protocol for continuous observation of natural killer (NK) cell-mediated cytotoxicity with microwell arrays using an automated microscope. We describe steps for isolating and labeling primary NK cells, loading cells onto microwell arrays, monitoring target wells, and image analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!