The non-receptor tyrosine kinase Src and receptor tyrosine kinase epidermal growth factor receptor (EGFR/ErbB1) have been established as collaborators in cellular signaling and their combined dysregulation plays key roles in human cancers, including breast cancer. In part due to the complexity of the biochemical network associated with the regulation of these proteins as well as their cellular functions, the role of Src in EGFR regulation remains unclear. Herein we present a new comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. This model, constructed manually from published biochemical literature, consists of 245 nodes representing proteins and their post-translational modifications sites, and over 1,000 biochemical interactions. Using computer simulations of the model, we find it is able to reproduce a number of cellular phenomena. Furthermore, the model predicts that overexpression of Src results in increased endocytosis of EGFR in the absence/low amount of the epidermal growth factor (EGF). Our subsequent laboratory experiments also suggest increased internalization of EGFR upon Src overexpression under EGF-deprived conditions, further supporting this model-generated hypothesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630219PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061757PLOS

Publication Analysis

Top Keywords

comprehensive multi-scale
8
multi-scale dynamical
8
dynamical model
8
model erbb
8
erbb receptor
8
receptor signal
8
signal transduction
8
transduction human
8
human mammary
8
mammary epithelial
8

Similar Publications

Graph neural networks have excellent performance and powerful representation capabilities, and have been widely used to handle Few-shot image classification problems. The feature extraction module of graph neural networks has always been designed as a fixed convolutional neural network (CNN), but due to the intrinsic properties of convolution operations, its receiving domain is limited. This method has limitations in capturing global feature information and easily ignores key feature information of the image.

View Article and Find Full Text PDF

A Topology-Enhanced Multi-Viewed Contrastive Approach for Molecular Graph Representation Learning and Classification.

Mol Inform

January 2025

Faculty of Information Technology, HUTECH University, 700000, Ho Chi Minh City, Vietnam.

In recent times, graph representation learning has been becoming a hot research topic which has attracted a lot of attention from researchers. Graph embeddings have diverse applications across fields such as information and social network analysis, bioinformatics and cheminformatics, natural language processing (NLP), and recommendation systems. Among the advanced deep learning (DL) based architectures used in graph representation learning, graph neural networks (GNNs) have emerged as the dominant and highly effective framework.

View Article and Find Full Text PDF

Detecting anomalies in distributed systems through log analysis remains challenging due to the complex temporal dependencies between log events, the diverse manifestation of system states, and the intricate causal relationships across distributed components. This paper introduces a TLAN (Temporal Logical Attention Network), a novel deep learning framework that integrates temporal sequence modeling with logical dependency analysis for robust anomaly detection in distributed system logs. Our approach makes three key contributions: (1) a temporal logical attention mechanism that explicitly models both time-series patterns and logical dependencies between log events across distributed components, (2) a multi-scale feature extraction module that captures system behaviors at different temporal granularities while preserving causal relationships, and (3) an adaptive threshold strategy that dynamically adjusts detection sensitivity based on system load and component interactions.

View Article and Find Full Text PDF

Background/objectives: Vision Transformers (ViTs) and convolutional neural networks (CNNs) have demonstrated remarkable performances in image classification, especially in the domain of medical imaging analysis. However, ViTs struggle to capture high-frequency components of images, which are critical in identifying fine-grained patterns, while CNNs have difficulties in capturing long-range dependencies due to their local receptive fields, which makes it difficult to fully capture the spatial relationship across lung regions.

Methods: In this paper, we proposed a hybrid architecture that integrates ViTs and CNNs within a modular component block(s) to leverage both local feature extraction and global context capture.

View Article and Find Full Text PDF

Addressing the issues with insufficient multi-scale feature perception and incomplete understanding of global information in traditional convolutional neural networks for image classification of wheat leaf disease, this paper proposes a global local feature network, i.e. GLNet, which adopts a unique global-local convolutional neural network architecture, realizes the comprehensive capturing of multi-scale features in an image by processing the global feature block and local feature block in parallel and integrating the information of both of them with the help of a feature fusion block.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!