Age- and light-dependent development of localised retinal atrophy in CCL2(-/-)CX3CR1(GFP/GFP) mice.

PLoS One

Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.

Published: December 2013

Previous studies have shown that CCL2/CX3CR1 deficient mice on C57BL/6N background (with rd8 mutation) have an early onset (6 weeks) of spontaneous retinal degeneration. In this study, we generated CCL2(-/-)CX3CR1(GFP/GFP) mice on the C57BL/6J background. Retinal degeneration was not detected in CCL2(-/-)CX3CR1(GFP/GFP) mice younger than 6 months. Patches of whitish/yellowish fundus lesions were observed in 17∼60% of 12-month, and 30∼100% of 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice. Fluorescein angiography revealed no choroidal neovascularisation in these mice. Patches of retinal pigment epithelium (RPE) and photoreceptor damage were detected in 30% and 50% of 12- and 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice respectively, but not in wild-type mice. All CCL2(-/-)CX3CR1(GFP/GFP) mice exposed to extra-light (∼800lux, 6 h/day, 6 months) developed patches of retinal atrophy, and only 20-25% of WT mice which underwent the same light treatment developed atrophic lesions. In addition, synaptophysin expression was detected in the outer nucler layer (ONL) of area related to photoreceptor loss in CCL2(-/-)CX3CR1(GFP/GFP) mice. Markedly increased rhodopsin but reduced cone arrestin expression was observed in retinal outer layers in aged CCL2(-/-)CX3CR1(GFP/GFP) mice. GABA expression was reduced in the inner retina of aged CCL2(-/-)CX3CR1(GFP/GFP) mice. Significantly increased Müller glial and microglial activation was observed in CCL2(-/-)CX3CR1(GFP/GFP) mice compared to age-matched WT mice. Macrophages from CCL2(-/-)CX3CR1(GFP/GFP) mice were less phagocytic, but expressed higher levels of iNOS, IL-1β, IL-12 and TNF-α under hypoxia conditions. Our results suggest that the deletions of CCL2 and CX3CR1 predispose mice to age- and light-mediated retinal damage. The CCL2/CX3CR1 deficient mouse may thus serve as a model for age-related atrophic degeneration of the RPE, including the dry type of macular degeneration, geographic atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630229PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061381PLOS

Publication Analysis

Top Keywords

ccl2-/-cx3cr1gfp/gfp mice
44
mice
17
ccl2-/-cx3cr1gfp/gfp
11
retinal atrophy
8
ccl2/cx3cr1 deficient
8
retinal degeneration
8
18-month ccl2-/-cx3cr1gfp/gfp
8
patches retinal
8
aged ccl2-/-cx3cr1gfp/gfp
8
retinal
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!