The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65.

PLoS Pathog

Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America.

Published: January 2014

Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis pathogenicity is dysregulation of innate immunity at the gingival epithelial interface, including suppression of IL-8 production by epithelial cells. NF-κB is a transcriptional regulator that controls important aspects of innate immune responses, and NF-κB RelA/p65 homodimers regulate transcription of IL8. Phosphorylation of the NF-κB p65 subunit protein on the serine 536 residue affects nuclear translocation and transcription of target genes. Here we show that SerB, a haloacid dehalogenase (HAD) family serine phosphatase secreted by P. gingivalis, is produced intracellularly and can specifically dephosphorylate S536 of p65 in gingival epithelial cells. A P. gingivalis mutant lacking SerB was impaired in dephosphorylation of p65 S536, and ectopically expressed SerB bound to p65 and co-localized with p65 in the cytoplasm. Ectopic expression of SerB also resulted in dephosphorylation of p65 with reduced nuclear translocation in TNF-α-stimulated epithelial cells. In contrast, the p105/50 subunit of NF-κB was unaffected by SerB. Co-expression of a constitutively active p65 mutant (S536D) relieved inhibition of nuclear translocation. Both the activity of the IL8 promoter and production of IL-8 were diminished by SerB. Deletion and truncation mutants of SerB lacking the HAD-family enzyme motifs of SerB were unable to dephosphorylate p65, inhibit nuclear translocation or abrogate IL8 transcription. Specific dephosphorylation of NF-κB p65 S536 by SerB, and consequent inhibition of nuclear translocation, provides the molecular basis for a bacterial strategy to manipulate host inflammatory pathways and repress innate immunity at mucosal surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630210PMC
http://dx.doi.org/10.1371/journal.ppat.1003326DOI Listing

Publication Analysis

Top Keywords

nuclear translocation
20
epithelial cells
12
serb
10
p65
9
serine phosphatase
8
porphyromonas gingivalis
8
il-8 production
8
dephosphorylation nf-κb
8
nf-κb rela/p65
8
innate immunity
8

Similar Publications

Ethyl 2,2-difluoro-2-(2-oxo-2H-chromen-3-yl) acetate inhibits the malignant biological behaviors of colorectal cancer by restricting the phosphorylation and nuclear translocation of STAT3.

Exp Cell Res

January 2025

Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China. Electronic address:

To investigate the effect of a novel coumarin derivative, ethyl 2,2-difluoro-2 - (2-oxo-2H-chromen-3-yl) acetate (C2F), on the malignant biological behaviors of colorectal cancer (CRC) and elucidate its mechanism. In vitro, the effects of C2F on the proliferation, apoptosis, migration, invasion, and cell cycle of CRC cells were analyzed by MTT assay, EdU stainning, colony formation assay, flow cytometry, wound healing and transwell assay. The anti-CRC activity of C2F was evaluated in a nude mice xenograft model in vivo.

View Article and Find Full Text PDF

Dandelion extract suppresses the stem-like properties of triple-negative breast cancer cells by regulating CUEDC2/β-catenin/OCT4 signaling axis.

J Ethnopharmacol

January 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:

Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.

View Article and Find Full Text PDF

FOXS1, frequently inactivated by promoter methylation, inhibited colorectal cancer cell growth by promoting TGFBI degradation through autophagy-lysosome pathway.

J Adv Res

January 2025

Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:

Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.

Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.

View Article and Find Full Text PDF

Cyclooxygenase 2 overexpression suppresses Smad3 and augments ERK1/2 signaling activated by TGFβ1 in endometrial stromal cells: a novel insight into endometriosis pathogenesis.

Mol Cell Endocrinol

January 2025

The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:

Research Question: To investigate the underlying mechanisms driving the opposing effects of transforming growth factor-beta 1 (TGFβ1) on the proliferation of control (CESCs) and ectopic (EESCs) endometrial stromal cells.

Design: Cell proliferation assays (CCK-8 and colony formation) were employed to assess the effects of TGFβ1 on CESC and EESC proliferation. An immortalized human endometrial stromal cell line (HESC) was used to elucidate the mechanisms behind cytostatic effect of TGFβ1 and the potential role of cyclooxygenase (COX)-2 in mediating the modulation of TGFβ1 signaling.

View Article and Find Full Text PDF

IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression.

Cell Death Discov

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!