Background: The study assesses the capability and accuracy of a robotic arm to perform burr holes.
Material And Methods: The robotic systems are instructed to recognize targets on artificial skull models placed in different positions and to make burr holes.
Results: The accuracy ranged from 0.1 to 1.0 mm.
Conclusion: Robotic arms are capable to perform basic surgical tasks. However, further improvement needs to be done to refine its accuracy and capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0032-1330954 | DOI Listing |
SLAS Technol
January 2025
Pharmacy Intravenous Admixture Service, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, Sichuan China.
With the continuous progress of medical technology, traditional medicine bottle identification and management methods have problems such as low efficiency and large errors, and innovative solutions are urgently needed. Due to its high sensitivity and rapid response characteristics, this study aims to develop a robot system for intravenous infusion based on nanophotonics sensing to realize accurate identification, grasping and opening of medicine bottles in a dynamic environment, so as to improve the safety and efficiency of intravenous infusion. In this paper, an intelligent robot system with nanophotonics sensor is designed, which uses nanomaterials to produce high sensitivity sensor, so as to realize the information recognition of medicine bottle labels.
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102208, China.
Purpose: The objective of this study was to explore the feasibility of using the TianJi Robot system for navigated needle positioning in the PCNL procedure in vitro.
Methods: A pig kidney with a segment of ureter was selected as the in vitro organ model. Iodine contrast agent was infused into the renal pelvis to dilate the renal pelvis and calyx to establish the in vitro hydronephrosis model.
Front Robot AI
January 2025
Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany.
In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al.
View Article and Find Full Text PDFFront Robot AI
January 2025
Interactive Robotics Laboratory, School of Computing and Augmented Intelligence (SCAI), Arizona State University (ASU), Tempe, AZ, United States.
We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Vrije Universiteit Brussel, Brussels Health Centre, Brussels, Belgium.
Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!