Sphere-forming cell subsets with cancer stem cell properties in human musculoskeletal sarcomas.

Int J Oncol

Department of Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy.

Published: July 2013

Musculoskeletal sarcomas are aggressive malignancies often characterized by an adverse prognosis despite the use of intense multiagent chemotherapy or molecular targeted therapy in combination to surgery and radiotherapy. Stem-like cells identified within solid tumors have been recently implicated in drug resistance, metastasis and local relapse. Here, we report the identification of putative cancer stem cells (CSCs) in sarcomas using a sphere culture system. These sarcospheres, able to grow in anchorage-independent and serum-starved conditions, express the pluripotent embryonic stem cell marker genes OCT3/4, Nanog and SOX2. Expression levels of these genes were greater in sarcospheres than in the parental tumor cultures. Importantly, the isolated tumor spheres transplanted into mice were tumorigenic and capable of recapitulating the human disease. Finally, we demonstrated that low (1%) O2 conditions, reproducing those found within the tumor microenvironment, significantly increase the number and the size of sarcospheres. The sphere formation assay is, therefore, a valuable method for the isolation of putative CSCs from human sarcomas and its efficiency is improved by controlling oxygen availability. This method provides a reliable preclinical model that can be used for future studies aimed at investigating crucial aspects of sarcoma biology, such as resistance to treatments and relapse.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2013.1927DOI Listing

Publication Analysis

Top Keywords

cancer stem
8
stem cell
8
musculoskeletal sarcomas
8
sphere-forming cell
4
cell subsets
4
subsets cancer
4
cell properties
4
properties human
4
human musculoskeletal
4
sarcomas
4

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!