Pentatricopeptide repeats: modular blocks for building RNA-binding proteins.

RNA Biol

Western Australian Institute for Medical Research and Centre for Medical Research; The University of Western Australia; Perth, WA Australia; School of Chemistry and Biochemistry; The University of Western Australia; Crawley, WA Australia.

Published: May 2015

Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism across the eukaryotic domain. Recent computational and structural studies have provided new insights into how they recognize RNA, and show that the recognition is sequence-specific and modular. The modular code for RNA-binding by PPR proteins holds great promise for the engineering of new tools to target RNA and identifying RNAs bound by natural PPR proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858425PMC
http://dx.doi.org/10.4161/rna.24769DOI Listing

Publication Analysis

Top Keywords

ppr proteins
12
pentatricopeptide repeats
4
repeats modular
4
modular blocks
4
blocks building
4
building rna-binding
4
proteins
4
rna-binding proteins
4
proteins pentatricopeptide
4
pentatricopeptide repeat
4

Similar Publications

Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments.

View Article and Find Full Text PDF

Seroprevalence of peste des petits ruminants in sheep and goats managed under pastoral and agro-pastoral systems.

J Infect Dev Ctries

December 2024

SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture (SUA), P.O. Box 3297 Chuo Kikuu, Morogoro, Tanzania.

Introduction: Peste des petits ruminants (PPR) is an infectious disease that imposes substantial economic burdens on small ruminants (SR) production. For Tanzania to develop efficient management and eradication plans, it is essential to comprehend the seroprevalence of PPR designated for global elimination by 2030.

Methodology: This study investigated the prevalence of PPR in animals kept under pastoral and agropastoral communities in Tanzania.

View Article and Find Full Text PDF

Dengue remains the most rapidly advancing vector-borne disease in the world, and while the disease burden is predominantly in low-to-middle-income countries, the association with poverty remains in question. Consequently, a study was undertaken to evaluate the prevalence of anti-dengue antibodies among individuals residing in the People's Housing Program (PPR), a government-sponsored low-cost housing initiative targeting low-income earners. This type of public housing often faces challenges, including substandard housing facilities.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the sudden deaths of 30 cervid animals in Assam's State Zoo, linked to peste des petits ruminants (PPR) virus.
  • The affected animals exhibited minimal clinical signs, but necropsy indicated a strong presence of PPRV, confirmed through RT-PCR testing.
  • The research identified domestic goats as potential carriers of PPRV, as tissue samples from them also tested positive, highlighting the risk of virus transmission to endangered species in captivity.
View Article and Find Full Text PDF

Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!