Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies, is resistant to current chemotherapies. We previously showed that triptolide inhibits PDAC cell growth in vitro and blocks metastatic spread in vivo. Triptolide downregulates HSP70, a molecular chaperone upregulated in several tumor types. This study investigates the mechanism by which triptolide inhibits HSP70. Because microRNAs (miRNA) are becoming increasingly recognized as negative regulators of gene expression, we tested whether triptolide regulates HSP70 via miRNAs. Here, we show that triptolide as well as quercetin, but not gemcitabine, upregulated miR-142-3p in PDAC cells (MIA PaCa-2, Capan-1, and S2-013). Ectopic expression of miR-142-3p inhibited cell proliferation, measured by electric cell-substrate impedance sensing, and decreased HSP70 expression, measured by real-time PCR and immunoblotting, compared with controls. We showed that miR-142-3p directly binds to the 3'UTR of HSP70, and that this interaction is important as HSP70 overexpression rescued miR-142-3p-induced cell death. We found that miR-142-3p regulates HSP70 independently of heat shock factor 1. Furthermore, Minnelide, a water-soluble prodrug of triptolide, induced the expression of miR-142-3p in vivo. This is the first description of an miRNA-mediated mechanism of HSP70 regulation in cancer, making miR-142-3p an attractive target for PDAC therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707985 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-12-1231 | DOI Listing |
Chin Med J (Engl)
December 2024
Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Background: Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China.
Background: Digestive system malignancies, including esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), liver hepatocellular carcinoma (LIHC), and colon adenocarcinoma (COAD), pose significant global health challenges. Identifying shared and distinct regulatory mechanisms across these cancers can lead to improved therapies. This study aims to construct and compare competing endogenous RNA (ceRNA) networks across ESCA, STAD, LIHC, and COAD to identify RNA biomarkers that could serve as precision therapeutic targets to enhance clinical outcomes and advance personalized cancer care.
View Article and Find Full Text PDFImmunol Invest
December 2024
Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.
Background: Asthma is the most common chronic pulmonary disease in children. MicroRNAs (miRNAs) play a regulatory role in the occurrence and development of asthma. We aimed to explore the differential expression of miRNAs in the peripheral blood of children with asthma and identify a miRNA that can alleviate asthma inflammation.
View Article and Find Full Text PDFArthritis Res Ther
November 2024
GenNBio Inc, 80, Deurimsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17796, Republic of Korea.
Stem Cell Res Ther
October 2024
Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan.
Background: Cell therapy can protect cardiomyocytes from hypoxia, primarily via paracrine secretions, including extracellular vesicles (EVs). Since EVs fulfil specific biological functions based on their cellular origin, we hypothesised that EVs from human cardiac stromal cells (CMSCLCs) obtained from coronary artery bypass surgery may have cardioprotective properties.
Objectives: This study characterises CMSCLC EVs (C_EVs), miRNA cargo, cardioprotective efficacy and transcriptomic modulation of hypoxic human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!