Objectives: To assess adverse pregnancy outcomes among active-duty U.S. military women who received pandemic H1N1 vaccine during pregnancy as well as adverse health outcomes among the newborns resulting from these pregnancies.

Methods: The primary study population was a retrospective cohort of active-duty U.S. military women vaccinated during pregnancy with either the pandemic H1N1 vaccine between October 2009 and June 2010 or with seasonal influenza vaccine between October 2008 and June 2009. Rates of pregnancy loss, preeclampsia or eclampsia, and preterm labor were compared between pandemic H1N1 vaccine-exposed (n=10,376) and seasonal influenza vaccine-exposed pregnancies (n=7,560). A secondary study population consisted of newborns resulting from these pregnancies. Rates of preterm birth, birth defects, fetal growth problems, and the male-to-female sex ratio were compared between newborns exposed to pandemic H1N1 vaccine and newborns exposed to seasonal influenza vaccine in utero.

Results: No significant differences were observed in rates of pregnancy loss (6.4% compared with 6.5%), preeclampsia or eclampsia (5.8% compared with 5.2%), or preterm labor (6.5% compared with 6.2%) between pandemic H1N1 vaccine-exposed and seasonal influenza vaccine-exposed pregnancies. Furthermore, no significant differences were observed in rates of preterm birth (6.2% compared with 6.3%), birth defects (2.1% compared with 2.0%), fetal growth problems (2.6% compared with 2.4%), or the male-to-female sex ratio (1.05 compared with 1.07) between newborns exposed in utero to pandemic H1N1 vaccine compared with seasonal influenza vaccine. Rates of all outcomes were lower or similar to overall general population rates. This study had at least 80% power to detect hazard ratios of 1.18-1.21 or odds ratios of 1.10-1.36, depending on outcome prevalence.

Conclusion: No adverse pregnancy or newborn health outcomes associated with pandemic H1N1 vaccination during pregnancy were noted among our cohort. These findings should be used to encourage increased vaccine coverage among pregnant women.

Download full-text PDF

Source
http://dx.doi.org/10.1097/AOG.0b013e318280d64eDOI Listing

Publication Analysis

Top Keywords

pandemic h1n1
32
seasonal influenza
20
influenza vaccine
16
h1n1 vaccine
16
military women
12
newborns exposed
12
compared
10
vaccine
9
h1n1
8
adverse pregnancy
8

Similar Publications

Distinct evolution patterns of influenza viruses and implications for vaccine development.

Innovation (Camb)

January 2025

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong SAR, China.

In conclusion, the distinct evolution patterns of panzootic influenza A(H5Nx) compared to A(H1N1) and A(H3N2) complicate vaccine development. Effective strategies must consider these unique patterns and the impact of pre-existing immunity. Leveraging AI-based methods for optimized antigen design is essential to mitigate the potential impact of emerging antigenically variable strains and will provide valuable insights for developing more effective vaccines to prepare for future pandemics.

View Article and Find Full Text PDF

Objectives: To investigate the prevalence of nine respiratory viruses and their clinical characteristics in children aged up to 5 years old in the state of Sergipe, Northeast of Brazil in the pre-COVID-19 pandemic period.

Methods: Children with suspected influenza virus infection were included in the study. Clinical samples were screened using real-time quantitative polymerase chain reaction for the diagnosis of adenovirus, parainfluenza (PIV)1, PIV2, PIV3, and human metapneumovirus.

View Article and Find Full Text PDF

A Scoping Review of the Current Knowledge of the Social Determinants of Health and Infectious Diseases (Specifically COVID-19, Tuberculosis, and H1N1 Influenza) in Canadian Arctic Indigenous Communities.

Int J Environ Res Public Health

December 2024

Indigenous and Global Health Research Group, Department of Medicine, Faculty of Medicine & Dentistry, College of Health Sciences, University of Alberta, 1-126 8602 112 Street, Edmonton, AB T6G 2E1, Canada.

Social determinants of health (SDHs) and the impact of colonization can make Canadian Arctic Indigenous communities susceptible to infectious diseases, including the coronavirus disease 2019 (COVID-19). This scoping review followed the PRISMA guidelines for scoping reviews and studied what is known about selected pandemics (COVID-19, tuberculosis, and H1N1 influenza) and SDHs (healthcare accessibility, food insecurity, mental health, cultural continuity, housing, community infrastructure, and socioeconomic status (SES)) for Canadian Arctic Indigenous communities. Original studies published in English and French up to October 2024 were located in databases (PubMed, Medline, and CINAHL), , and through reference tracking.

View Article and Find Full Text PDF

Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses.

Vaccines (Basel)

January 2025

Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.

An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).

View Article and Find Full Text PDF

Novel introductions of human-origin H3N2 influenza viruses in swine, Chile.

Front Vet Sci

January 2025

Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.

Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!