Facile and efficient reprogramming of ciliary body epithelial cells into induced pluripotent stem cells.

Stem Cells Dev

Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina 27599-7040, USA.

Published: September 2013

Induced pluripotent stem (iPS) cells are attractive for cell replacement therapy, because they overcome ethical and immune rejection issues that are associated with embryonic stem cells. iPS cells have been derived from autonomous fibroblasts at low efficiency using multiple ectopic transcription factors. Recent evidence suggests that the epigenome of donor cell sources plays an important role in the reprogramming and differentiation characteristics of iPS cells. Thus, identification of somatic cell types that are easily accessible and are more amenable for cellular reprogramming is critical for regenerative medicine applications. Here, we identify ciliary body epithelial cells (CECs) as a new cell type for iPS cell generation that has higher reprogramming efficiency compared with fibroblasts. The ciliary body is composed of epithelial cells that are located in the anterior portion of the eye at the level of the lens and is readily surgically accessible. CECs also have a reduced reprogramming requirement, as we demonstrate that ectopic Sox2 and c-Myc are dispensable. Enhanced reprogramming efficiency may be due to increased basal levels of Sox2 in CECs. In addition, we are the first to report a cellular reprogramming haploinsufficiency observed when reprogramming with fewer factors (Oct4 and Klf4) in Sox2 hemizygous cells. Taken together, endogenous Sox2 levels are critical for the enhanced efficiency and reduced exogenous requirement that permit facile cellular reprogramming of CECs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760062PMC
http://dx.doi.org/10.1089/scd.2012.0600DOI Listing

Publication Analysis

Top Keywords

ciliary body
12
epithelial cells
12
ips cells
12
cellular reprogramming
12
reprogramming
9
cells
9
body epithelial
8
cells induced
8
induced pluripotent
8
pluripotent stem
8

Similar Publications

Importance: Capturing high-quality images of the entire peripheral retina while minimizing the use of scleral depression could increase the quality of examinations for retinopathy of prematurity (ROP) while reducing neonatal stress.

Objective: To evaluate whether an investigational handheld ultra-widefield optical coherence tomography (UWF-OCT) device without scleral depression can be used to document high-quality images of the peripheral retina for use in ROP examinations.

Design, Setting, And Participants: This was a prospective, cross-sectional study in the neonatal intensive care unit at a single academic medical center.

View Article and Find Full Text PDF

Background: Recent studies have indicated that oxidative stress is a crucial pathophysiological process in glaucoma. We hypothesized that Posner-Schlossman syndrome (PSS) is a vascular inflammation in the ciliary body due to oxidative stress and endothelial dysfunction. Thus, we investigated serum uric acid (UA) and lipid levels in patients with refractory PSS with the aim of providing basic evidence for the mechanism of PSS.

View Article and Find Full Text PDF

C21ORF2 mutations point towards primary cilia dysfunction in amyotrophic lateral sclerosis.

Brain

December 2024

Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium.

Progressive loss of motor neurons is the hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain incompletely understood. In this study, we investigate the effects of C21ORF2 mutations, a gene recently linked to ALS, and find that primary cilia are dysfunctional. Human patient-derived mutant C21ORF2 motor neurons have a reduced ciliary frequency and length.

View Article and Find Full Text PDF

Distinct roles of centriole distal appendage proteins in ciliary assembly and disassembly.

Cell Commun Signal

December 2024

Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.

The primary cilium is a cellular organelle whose assembly and disassembly are closely linked to the cell cycle. The centriole distal appendage (DA) is essential for the early stages of ciliogenesis by anchoring the mother centriole to the cell surface. Despite the identification of over twelve proteins constituting the DA, including CEP83, CEP89, CEP164, FBF1, and SCLT1, their specific functions in ciliary dynamics are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!