The paper describes a simple scheme enabling the real-time characterization of fluctuations, e.g., of the conductance in scanning tunneling microscopy. The technique can be used in parallel to other data acquisition, evaluating the rate, the amplitude, and the duty cycle of telegraphic noise in the tunneling current. This kind of scanning probe microscopy allows to evaluate the noise parameters as a function of the average tunneling current, the electron energy, and the lateral position. Images of the noise with Ångstrom spatial resolution are acquired simultaneously to the topographic information providing a direct correlation between the structural information and the noise. The method can be applied to a large variety of systems to monitor dynamics on the nanoscale, e.g., the localization of tunneling current induced switching within a single molecule. Noise spectroscopy may reveal the involved molecular orbitals, even if they cannot be resolved in standard scanning tunneling spectroscopy. As an example we present experimental data of the organic molecule copper phthalocyanine on a Cu(111) surface [J. Schaffert, M. C. Cottin, A. Sonntag, H. Karacuban, C. A. Bobisch, N. Lorente, J.-P. Gauyacq, and R. Möller, Nature Mater. 12, 223-227 (2013)].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4801458 | DOI Listing |
Bioinspir Biomim
January 2025
Department of Mechanical and Aeronautical Engineering, University of Pretoria, 1 Lynnwood Road, Pretoria, 0002, SOUTH AFRICA.
Albatrosses are increasingly drawing attention from the scientific community due to their remarkable flight capabilities. Recent studies suggest that grey-headed albatrosses may be the fastest and most energy-efficient of the albatross species, yet no attempts have been made to replicate their wing design. A key factor in aircraft design is the airfoil, which remains uncharacterized for the grey-headed albatross.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set.
View Article and Find Full Text PDFFront Plant Sci
January 2025
China Eco-city Academy Co., Ltd., Tianjin, China.
The establishment of conservation areas is an important strategy for endangered species conservation. In this study, we investigated the distributions of suitable habitat areas for three level 1 endangered Cupressaceae plants (, , and ) in China and used the Marxan model to delineate the priority conservation areas for each species. The results showed that had the broadest suitable growing area under the current climate in China and is followed by , with an area of 91 × 10 km, and had the smallest suitable habitat areas at only 7 × 10 km.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Division of Plastic Surgery, Johns Hopkins University, Baltimore, MD, USA.
Background And Objective: Diabetic neuropathy significantly elevates the risk of foot ulceration and lower-limb amputation, underscoring the need for precise assessment of tissue perfusion to optimize management. This narrative review explores the intricate relationship between sympathetic nerves and tissue perfusion in diabetic neuropathy, highlighting the important role of autonomic neuropathy in blood flow dynamics and subsequent compromises in tissue perfusion. The consequences extend to the development of diabetic peripheral neuropathy and related foot complications.
View Article and Find Full Text PDFNanoscale
January 2025
College of Science, China Agricultural University, Beijing, 100083, China.
Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!