One of the systems planned for the measurement of electron density in ITER is a multi-channel tangentially viewing combined interferometer-polarimeter (TIP). This work discusses the current status of the design, including a preliminary optical table layout, calibration options, error sources, and performance projections based on a CO2/CO laser system. In the current design, two-color interferometry is carried out at 10.59 μm and 5.42 μm and a separate polarimetry measurement of the plasma induced Faraday effect, utilizing the rotating wave technique, is made at 10.59 μm. The inclusion of polarimetry provides an independent measure of the electron density and can also be used to correct the conventional two-color interferometer for fringe skips at all densities, up to and beyond the Greenwald limit. The system features five chords with independent first mirrors to reduce risks associated with deposition, erosion, etc., and a common first wall hole to minimize penetration sizes. Simulations of performance for a projected ITER baseline discharge show the diagnostic will function as well as, or better than, comparable existing systems for feedback density control. Calculations also show that finite temperature effects will be significant in ITER even for moderate temperature plasmas and can lead to a significant underestimate of electron density. A secondary role TIP will fulfill is that of a density fluctuation diagnostic; using a toroidal Alfvén eigenmode as an example, simulations show TIP will be extremely robust in this capacity and potentially able to resolve coherent mode fluctuations with perturbed densities as low as δn∕n ≈ 10(-5).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4798602DOI Listing

Publication Analysis

Top Keywords

electron density
12
tangentially viewing
8
viewing combined
8
combined interferometer-polarimeter
8
density
6
conceptual design
4
design tangentially
4
iter
4
interferometer-polarimeter iter
4
iter density
4

Similar Publications

A highly sensitive and fast-response fluorescence nanoprobe for in vivo imaging of hypochlorous acid.

J Hazard Mater

January 2025

State Key laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:

Fluorescent probes for in vivo hypochlorous acid (HClO) imaging often face challenges of low selectivity and high cytotoxicity, largely due to poor analyte recognition and water-insoluble aromatic skeletons. To address this, we synthesized fluorescein hydrazide by introducing a spiro-lactam unit into fluorescein, which offers high emission intensity and molar absorption. The five-membered heterocycle in fluorescein hydrazide is selectively disrupted by HClO, enhancing the conjugated system and electron delocalization of the fluorophore, resulting in highly sensitive fluorescence detection of HClO.

View Article and Find Full Text PDF

Effect of Fabricating Process on the Performance of Two-Dimensional p-Type WSe Field Effect Transistors.

Nano Lett

January 2025

Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as WSe, are promising candidates for next-generation integrated circuits. However, the dependence of intrinsic properties of TMD devices on various processing steps remains largely unexplored. Here, using pristine p-type WSe devices as references, we comprehensively studied the influence of each step in traditional nanofabrication methods on device performance.

View Article and Find Full Text PDF

Nearly Barrierless Four-Hole Water Oxidation Catalysis on Semiconductor Photoanodes with High Density of Accumulated Surface Holes.

J Am Chem Soc

January 2025

Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.

View Article and Find Full Text PDF

Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.

View Article and Find Full Text PDF

We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!