A simple multipoint humidity measurement by polyvinyl alcohol (PVA)-coated Fresnel reflection-based optical fiber sensors with an Array-Waveguide Grating (AWG) is proposed and demonstrated. Every channel end of the AWG is split as a vertical planar surface, and then is coated with a layer of a PVA whose refractive index is sensitive to moisture. The reflection intensity for each channel will change with its surrounding humidity, since the optical fiber interface's Fresnel reflection is affected strongly by the refractive index difference of the interface two sides. Multiplexing is achieved by the AWG with 16 channels, in which 15 channels can be used as sensing heads when they are coated with a layer of PVA and the left one is used as a reference channel. The experimental setup is simple and easy to handle. Experimental results show that the proposed Fresnel reflection-based optical fiber sensor for multipoint humidity measurement works well and the average sensitivity is 0.135 dB∕% relative humidity (RH) within the measurement range of 30%-80% RH.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4803005DOI Listing

Publication Analysis

Top Keywords

humidity measurement
16
optical fiber
16
fresnel reflection-based
12
reflection-based optical
12
relative humidity
8
measurement polyvinyl
8
fiber sensors
8
sensors array-waveguide
8
array-waveguide grating
8
multipoint humidity
8

Similar Publications

Climate change is making extreme heat events more frequent and intense. This negatively impacts many aspects of society, including organised sport. As the world's most watched sporting event, the FIFA World Cup commands particular attention around the threat of extreme heat.

View Article and Find Full Text PDF

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager.

Sensors (Basel)

January 2025

Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.

We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!