Human African sleeping sickness (HAT) is caused by the parasitic protozoan Trypanosoma brucei. Polyamine biosynthesis is an important drug target in the treatment of HAT. Previously we showed that trypanosomatid S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme for biosynthesis of the polyamine spermidine, is activated by heterodimer formation with an inactive paralogue termed prozyme. Furthermore, prozyme protein levels were regulated in response to reduced AdoMetDC activity. Herein we show that T. brucei encodes three prozyme transcripts. The 3'UTRs of these transcripts were mapped and chloramphenicol acetyltransferase (CAT) reporter constructs were used to identify a 1.2 kb region that contained a 3'UTR prozyme regulatory element sufficient to upregulate CAT protein levels (but not RNA) upon AdoMetDC inhibition, supporting the hypothesis that prozyme expression is regulated translationally. To gain insight into trans-acting factors, genetic rescue of AdoMetDC RNAi knock-down lines with human AdoMetDC was performed leading to rescue of the cell growth block, and restoration of prozyme protein to wild-type levels. Metabolite analysis showed that prozyme protein levels were inversely proportional to intracellular levels of decarboxylated AdoMet (dcAdoMet). These data suggest that prozyme translation may be regulated by dcAdoMet, a metabolite not previously identified to play a regulatory role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771639PMC
http://dx.doi.org/10.1111/mmi.12226DOI Listing

Publication Analysis

Top Keywords

prozyme protein
12
protein levels
12
prozyme
9
trypanosoma brucei
8
s-adenosylmethionine decarboxylase
8
adometdc
5
levels
5
product feedback
4
feedback regulation
4
regulation implicated
4

Similar Publications

Article Synopsis
  • * Enzymatic hydrolysis significantly increased protein solubility from under 3.1% to about 16%, with up to 87.73% hydrolysis achieved, particularly with the 1:2 enzyme ratio treatment.
  • * The treated yeast proteins showed better functionality, including increased surface area, emulsion stability, and an enhanced amino acid profile, suggesting potential for various food applications.
View Article and Find Full Text PDF

Improvement of sleep duration and quality through GABA receptor by whey protein hydrolysate containing DIQK as the main active compound.

J Dairy Sci

November 2024

Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea. Electronic address:

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited.

View Article and Find Full Text PDF

Olive flounder (OF) is a widely aqua-cultivated and recognized socioeconomic resource in Korea. However, more than 50% of by-products are generated when processing one OF, and there is no proper way to utilize them. With rising awareness and interest in eco-friendly bio-materialization recycling, this research investigates the potential of enzymatic hydrolysis of OF by-products (OFB) to produce functional ingredients.

View Article and Find Full Text PDF

Whey protein (WP) has nutritional value, but the presence of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) cause allergic reactions. In this study, hypoallergenic whey protein hydrolyate (HWPH) was prepared by decomposing β-LG and α-LA of WP using exo- and endo-type proteases. The enzyme mixing ratio and reaction conditions were optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!