Protein Phosphatase 2A (PP2A) consists of a collection of heterotrimeric serine/threonine phosphatase holoenzymes that play multiple roles in cell signaling via dephosphorylation of numerous substrates of a large family of serine/threonine kinases. PP2A substrate specificity is mediated by B regulatory subunits of four different families, which selectively recognize diverse substrates by mechanisms that are not well understood. Among the many signaling pathways with critical PP2A functions are several deregulated in cancer cells, and PP2A is a know tumor suppressor. However, the precise composition of the heterotrimeric PP2A complexes with tumor supressor activity is not well understood. This review is centered on the emerging role of the B regulatory subunit B55α and related subfamilly members in the modulation of the phosphorylation state of pocket proteins and mitotic CDK substrates, as well as the implications of PP2A function disruption in cancer in the context of these activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636755PMC
http://dx.doi.org/10.1177/1947601912473479DOI Listing

Publication Analysis

Top Keywords

pp2a
8
implications pp2a
8
disruption cancer
8
well understood
8
pp2a counterbalances
4
counterbalances phosphorylation
4
phosphorylation prb
4
prb mitotic
4
mitotic proteins
4
proteins multiple
4

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

In light of the increasingly adverse environmental conditions and the concomitant challenges to the survival of important crops, there is a pressing need to enhance the resilience of pepper seedlings to extreme weather. Carotenoid plays an important role in plants' resistance to abiotic stress. Nevertheless, the relationship between carotenoid biosynthesis and sweet pepper seedlings' resistance to different abiotic stresses remains uncertain.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is one of the most abundant serine/threonine phosphatases and plays critical roles in regulating cell fate and function. We previously showed that PP2A regulates the differentiation of CD4 T cells and the development of thymocytes. Nevertheless, its role in CD8 T cells remains elusive.

View Article and Find Full Text PDF

Corrigendum to "NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity"[Cancer Lett. 547 (2022) 215884].

Cancer Lett

January 2025

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Clinical Laboratory, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!