Unlabelled: Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow-derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations, the otherwise prometastatic Gr1(+) myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. Bone marrow-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by bone marrow transplant from Tsp-1(+) donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacologic inducer of Tsp-1 in Gr1(+) bone marrow cells, which dramatically suppressed metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1(+) myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1(+) cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer.
Significance: The mechanisms of metastasis suppression are poorly understood. Here, we have identified a novel mechanism whereby metastasis-incompetent tumors generate metastasis-suppressive microenvironments in distant organs by inducing Tsp-1 expression in the bone marrow–derived Gr1+myeloid cells. A 5-amino acid peptide with Tsp-1–inducing activity was identified as a therapeutic agent against metastatic cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672408 | PMC |
http://dx.doi.org/10.1158/2159-8290.CD-12-0476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!