AI Article Synopsis

  • N-acetylaspartate (NAA) is a valuable diagnostic marker for neuropsychiatric disorders, with studies showing decreased NAA levels in various conditions, including those involving substance abuse.
  • Recent research identified the enzyme that produces NAA, known as "shati" (aspartate N-acetyltransferase), and created a knockout mouse model to explore NAA's functions, finding significant reductions in NAA levels in certain brain regions.
  • The heterozygous Nat8l mice displayed normal behavior overall but exhibited reduced vertical activity and atypical responses to methamphetamine, highlighting NAA's potential role in regulating behavior and its influence on related neuromodulators.

Article Abstract

N-acetylaspartate (NAA) is recognized as a noninvasive diagnostic neuronal marker for a host of neuropsychiatric disorders using magnetic resonance spectroscopy (MRS). Numerous correlative clinical studies have found significant decreases in NAA levels in specific neuronal systems in an array of neuropsychiatric and substance-abuse disorders. We have recently identified the methamphetamine-induced neuronal protein known as "shati" as the NAA biosynthetic enzyme (aspartate N-acetyltransferase [Asp-NAT]; gene Nat8l). We have generated an Nat8l transgenic knockout mouse line to study the functions of NAA in the nervous system. We were unable to breed homozygous Nat8l knockout mice successfully for study and so used the heterozygous mice (Nat8l(+/-) ) for initial characterization. MRS analysis of the Nat8l(+/-) mice indicated significant reductions in NAA in cortex (-38%) and hypothalamus (-29%) compared with wild-type controls, which was confirmed using HPLC (-29% in forebrain). The level of the neuromodulator N-acetylaspartylglutamate (NAAG), which is synthesized from NAA, was decreased by 12% in forebrain as shown by HPLC. Behavioral analyses of the heterozygous animals indicated normal behavior in most respects but reduced vertical activity in open-field tests compared with age- and sex-matched wild-type mice of the same strain. Nat8l(+/-) mice also showed atypical locomotor responses to methamphetamine administration, suggesting that NAA is involved in modulating the hyperactivity effect of methamphetamine. These observations add to accumulating evidence suggesting that NAA has specific regulatory functional roles in mesolimbic and prefrontal neuronal pathways either directly or indirectly through impact on NAAG synthesis

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23234DOI Listing

Publication Analysis

Top Keywords

naa
8
nat8l+/- mice
8
suggesting naa
8
mice
5
reductions brain
4
brain n-acetylaspartate
4
n-acetylaspartate levels
4
levels contribute
4
contribute etiology
4
etiology neuropsychiatric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!