Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis.

J Invest Dermatol

Department of Internal Medicine, University of Michigan Medical School and School of Public Health, Ann Arbor, Michigan, USA; Department of Epidemiology, University of Michigan Medical School and School of Public Health, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan Medical School and School of Public Health, Ann Arbor, Michigan, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.

Published: November 2013

The genetic alterations contributing to melanoma pathogenesis are incompletely defined, and few independent prognostic features have been identified beyond the clinicopathological characteristics of the primary tumor. We used transcriptome profiling of 46 primary melanomas, 12 melanoma metastases, and 16 normal skin (N) samples to find genes associated with melanoma development and progression. Results were confirmed using immunohistochemistry and real-time PCR and replicated in an independent set of 330 melanomas using AQUA analysis of tissue microarray (TMA). Transcriptome profiling revealed that transcription factor HMGA2, previously unrecognized in melanoma pathogenesis, is significantly upregulated in primary melanoma and metastases (P-values=1.2 × 10(-7) and 9 × 10(-5)) compared with N. HMGA2 overexpression is associated with BRAF/NRAS mutations (P=0.0002). Cox proportional hazard regression model and log-rank test showed that HMGA2 is independently associated with disease-free survival (hazard ratio (HR)=6.3, 95% confidence interval (CI)=1.8-22.3, P=0.004), overall survival (OS) (stratified log-rank P=0.008), and distant metastases-free survival (HR=6.4, 95% CI=1.4-29.7, P=0.018) after adjusting for American Joint Committee on Cancer (AJCC) stage and age at diagnosis. Survival analysis in an independent replication TMA of 330 melanomas confirmed the association of HMGA2 expression with OS (P=0.0211). Our study implicates HMGA2 in melanoma progression and demonstrates that HMGA2 overexpression can serve as an independent predictor of survival in melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267221PMC
http://dx.doi.org/10.1038/jid.2013.197DOI Listing

Publication Analysis

Top Keywords

transcriptome profiling
12
melanoma
8
melanoma progression
8
melanoma pathogenesis
8
melanoma metastases
8
330 melanomas
8
hmga2 overexpression
8
hmga2
7
survival
5
profiling identifies
4

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

Unveiling urinary extracellular vesicle mRNA signature for early diagnosis and prognosis of bladder cancer.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.

View Article and Find Full Text PDF

Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!