Personal activity patterns have often been suggested as a source of unexplained variability when comparing personal particulate matter (PM2.5) exposure to modeled data using central site or microenvironmental data. To characterize the effect of personal activity patterns on asthmatic children's personal PM2.5 exposure, data from the Windsor, Ontario Exposure Assessment Study were analyzed. The children spent on an average 67.1±12.7% (winter) and 72.3±22.6% (summer) of their time indoors at home where they received 51.7±14.8% and 66.3±19.0% of their PM2.5 exposure, respectively. In winter, 17.7±5.9% of their time was spent at school where they received 38.6±11.7% of their PM2.5 exposure. In summer, they spent 10.3±11.8% 'indoors away from home', which represented 23.4±18.3% of their PM2.5 exposure. Personal activity codes adapted from those of the National Human Activity Pattern Survey and the Canadian Human Activity Pattern Survey were assigned to the children's activities. Of the over 100 available activity codes, 19 activities collectively encompassed nearly 95% of their time. Generalized estimating equation (GEE) models found that, while indoors at home, relative to daytime periods when sedentary activities were conducted, several personal activities were associated with significantly elevated personal PM2.5 exposures. Indoor playing represented a mean increase in PM2.5 of 10.1 μg/m(3) (95% CI 6.3-13.8) and 11.6 μg/m(3) (95% CI 8.1-15.1) in winter and summer, respectively, as estimated by a personal nephelometer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jes.2013.20DOI Listing

Publication Analysis

Top Keywords

pm25 exposure
20
personal pm25
12
personal activity
12
personal
10
personal activities
8
pm25
8
pm25 exposures
8
activity patterns
8
activity codes
8
human activity
8

Similar Publications

Long-term exposure to PM pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM exposure levels across China.

View Article and Find Full Text PDF

BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows.

View Article and Find Full Text PDF

Ambient PM and specific sources increase inflammatory cytokine responses to stimulators and reduce sensitivity to inhibitors.

Environ Res

July 2024

Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.

Ambient exposure to fine particulate matter (PM) is associated with increased morbidity and mortality from multiple diseases. Recent observations suggest the hypothesis that trained immunity contributes to these risks, by demonstrating that ambient PM sensitizes innate immune cells to mount larger inflammatory response to subsequent bacterial stimuli. However, little is known about how general and durable this sensitization phenomenon is, and whether specific sources of PM are responsible.

View Article and Find Full Text PDF

Previous studies have attempted to clarify the relationship between the occurrence of pulmonary tuberculosis (PTB) and exposure to air pollutants. However, evidence from multi-centres, particularly at the national level, is scarce, and no study has examined the modifying effect of greenness on air pollution-TB associations. In this study, we examined the association between long-term exposure to ambient air pollutants (PM p.

View Article and Find Full Text PDF

Physical activity attenuates negative effects of short-term exposure to ambient air pollution on cognitive function.

Environ Int

February 2022

Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China. Electronic address:

Article Synopsis
  • Physical activity has beneficial effects on cognitive function while air pollution has negative impacts, and their effects may influence each other.
  • The study tracked 90 healthy young adults' exposure to air pollution and their physical activity levels over several sessions, assessing cognitive function through tests and EEG signals.
  • Findings indicate that short-term exposure to air pollution negatively affected executive function, but engaging in more physical activity can help counteract this damage, especially in polluted environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!